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70 Chapter 7: The 
hannel with antidotsMany physi
al observations in mesos
opi
 ballisti
 devi
es 
ould su

essfully be explainedby the interferen
e of 
lassi
al orbits in the system. Among these are the Shubnikov-de-Haas os
illations and the QHE of the free 2DEG dis
ussed in the previous 
hapter,the magneto
ondu
tan
e os
illations of a 2DEG in an antidot superlatti
e [84, 55℄ andthose of a large 
ir
ular quantum dot [62℄. Also the 
urrent os
illations in a resonanttunneling diode (RTD) [114℄ 
ould be des
ribed in these terms. There is, however, anongoing dis
ussion whi
h e�e
ts 
an be treated using semi
lassi
al methods, and whi
hare of genuine quantum origin (i. e. of higher than leading order in �h).The experimental observations of a mesos
opi
 
hannel with a 
entral antidot mole
ule (adimer) have been reprodu
ed by a quantum 
al
ulation [48℄. The authors related the mea-sured magneto
ondu
tan
e features to inherent quantum e�e
ts. They therefore 
laimedthat the features are not a

essible by semi
lassi
al approximations. This motivates amore detailed examination whether the observations of this system are really beyond thelimit of a semi
lassi
al des
ription.A se
ond reason for working out a semi
lassi
al approximation of this stru
ture is thatit has a mixed phase spa
e. The bifur
ations whi
h o

ur in those systems lead to di-vergen
ies in a leading-order �h approximation. Mu
h interest has been fo
used on theimplementation of bifur
ations in semi
lassi
al approximations (see for example Ref. [71℄and the referen
es 
ited therein) and to tra
k down their in
uen
e on experimental quan-tum os
illations. In the RTD, for example, period-doubling bifur
ations were found tobe responsible for a period doubling in the os
illations of the observed I-V 
urves [114℄.The examination of the 
hannel system will, as it exhibits bifur
ations, 
ontribute to thisdis
ussion.Finally, the quantum 
al
ulations for the 
hannel were able to reprodu
e its main features.They are, however, numeri
ally so demanding that the dependen
e on the external vari-ables 
ould only be varied on a relatively 
oarse grid. For semi
lassi
al 
al
ulations theserestri
tions will be 
onsiderably less tight. Within su
h a des
ription, even a �t of thee�e
tive potential of the system 
ould be feasible.These three points make the 
hannel system a real 
hallenge to semi
lassi
s.7.1 The devi
eThe devi
e 
onsists of ele
trostati
 gates 
on�ning a high-mobility 2DEG in a GaAs/GaAlAsheterostru
ture. The 2DEG was 82nm beneath the surfa
e, its ele
tron density wasne � 3:47 � 1015m�2, and the mobility about 100m2V �1s�1. The SEM pi
ture of theFigure 7.1: SEM photograph ofthe gate stru
ture. All gates were
onta
ted separately in a laterstep. For the experiments dis-
ussed in this work, all 
hannelgates are 
onne
ted to the 
om-mon gate voltage Vg, and the twoantidots are biased with Vd. 1µm
0.2µm

0.2µm

0.2µm

0.2µm

0.2µmgate stru
ture is shown in Fig. 7.1. Four metallized gates are used to de�ne a long, narrow
hannel (5�m �1�m). Two 
ir
ular gates with a diameter of 0:2�m at a distan
e of 0:2�m



7.2 Experimental results 71from ea
h other and from the 
hannel gates de�ne the antidot dimer. All gates are indivi-dually 
onta
ted using a bridge te
hnique. Details about the devi
e and its fabri
ation arepresented in [33, 48, 34℄ and the referen
es 
ited therein. All measurements were taken atT � 100mK using standard low-ex
itation AC-te
hniques. The magneti
 �eld was appliedperpendi
ular to the 2DEG.7.2 Experimental resultsThis extremely versatile devi
e was used for a variety of di�erent experiments. The 
on-du
tan
e was examined for the 
hannel (using all four 
hannel gates) and the half 
hannel(using only the left 
hannel gates). The antidot gate voltages were varied from the open
hannel to 
omplete pin
h-o�, and the magneti
 �eld range examined stret
hes from zero�eld to the high-�eld regime, where the quantum me
hani
al edge 
hannel pi
ture getsa

urate. Applying gate voltages that pin
h o� all but one 
onstri
tion establishes a quan-tum point 
onta
t (QPC) in the system. A lot of work was dedi
ated to the measurementof the quantized 
ondu
tan
e e�e
ts of these QPCs. The 
orresponding experimentalplateaus were also used to approximately s
ale the antidot voltages to an e�e
tive deple-tion width of both the antidots and the 
hannel walls. Details on these experiments 
anbe found in Refs. [34, 33, 35, 48, 47, 67℄.For the experiments 
onsidered in this work, an identi
al voltage Vg, whi
h was held �xed,was applied to all 
hannel gates. Both antidot gates were given the same bias voltageVd, whi
h was the se
ond parameter besides the magneti
 �eld. The parameter range ofinterest for this thesis 
orresponds to large antidots whi
h overlap, so that the 
entral
onstri
tion is pin
hed o�. The magneti
 �eld is varied in the regime where the 
y
lotrondiameter of the 
lassi
al ele
tron motion is 
omparable with the 
hannel width. In thefollowing, a short summary of the experimental �ndings relevant for this work will begiven.Fig. 7.2(a) shows a typi
al magneto
ondu
tan
e tra
e measured for large antidots. Thelongitudinal 
ondu
tan
e Gxx is near 4 
ondu
tan
e units e2=h for most �eld strengths,dropping to approximately half the value in a sharp peak. The peak position 
orresponds tothe 
ommensurability of the size of the antidot dimer and the 
lassi
al 
y
lotron diameter(marked with arrows)1 . Note that this is 
ompletely analogous to the 
ommensurabilitypeaks observed in antidot latti
es [84, 55℄. Fig. 7.2(b) gives a 
loseup of the peak (boxedregion in (a)). Superimposed on the peak, quantum os
illations with an approximately
onstant period 
an be observed. This is studied in more detail in (
), where the spa
ings ofthe neighboring 
ondu
tan
e maxima are plotted as a fun
tion of B. The di�erent 
urves
orrespond to slightly di�erent antidot voltages. The average spa
ing of the maxima isnearly 
onstant, only slightly de
reasing with stronger �elds. Superimposed on this smoothtrend random like variations are observed.The unique design of the sample with individually 
onta
ted gates allows to 
hange thevoltages of the antidots without a�e
ting the other system properties. This was exploitedto measure the in
uen
e of the antidot diameter, whi
h is dire
tly related to the appliedvoltage via the indu
ed depletion width. Fig. 7.2(d) shows the in
uen
e of this parameter.The points in the diagram 
orrespond to the positions of the maximum of Gxx, the solid1The antidot size is determined by the lowest point of the saddle of the model potential (de�ned belowin Eq. (7.1), with sd = 2 and sg = 1).
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*Figure 7.2: Experimental results. (a,b) Magneto
ondu
tan
e tra
e for Vg = �1:44V.The verti
al arrows indi
ate the 
ommensurability 
ondition (see main text). (
)Spa
ing of the 
ondu
tan
e maxima for three gate voltages Vg = �1:42 : : :�1:5 V. (d)Dots 
orrespond the positions of the 
ondu
tan
e maxima in dependen
e of B and Vg.Solid lines are to guide the eye. Dashed lines are 
al
ulated from the simple pi
turedes
ribed in Se
. 7.3.1.lines are just to guide the eye. For smaller antidot voltage the maxima move to stronger�elds. They shift mostly parallel, interrupted by 
hara
teristi
 dislo
ations (boxes).7.3 Theoreti
al des
ription7.3.1 Intuitive dis
ussionSome of the observed e�e
ts 
an immediately be understood on an intuitive level. A simplepi
ture will 
larify whi
h of the features need more detailed dis
ussion.Sin
e the 
entral 
onstri
tion is pin
hed o� in the observed regime of antidot voltages,two QPCs are formed between the 
hannel wall and the antidots. The �rst plateau ofquantized 
ondu
tion leads to a 
ondu
tan
e of e2=h per 
onstri
tion and per spin, sothat the value of 4e2=h is expe
ted if no interferen
e takes pla
e between the QPCs. If the
y
lotron diameter equals the 
hannel width, the ele
trons passing the lower 
onstri
tion
an be fo
used ba
k through the upper 
onstri
tion, so that the 
ondu
tan
e falls to2e2=h. Using the simple model potential de�ned below in Eq. (7.1), one 
an estimate the
entral peak position by assuming that the orbits are 
y
lotron-like, passing the saddleof the potential at the lowest point. A rough estimate of the peak width is given bythe magneti
 �eld strengths where 
y
lotron orbits pass the 
onstri
tion at Fermi energy.These estimates are 
ompared to the experimental Gxx in Fig. 7.2(a). The magnitude ofthe 
ondu
tan
e, the position of the 
ondu
tan
e dip (verti
al arrow), and also its width(horizontal arrow) are in quantitative agreement with this simple 
onsideration.The os
illations superimposed on the peak may be explained in analogy to the Aharonov-Bohm (AB) e�e
t. Identifying 
y
lotron orbits around the two 
entral antidots withthe AB ring, equidistant maxima in B are expe
ted. Subsequent maxima 
orrespond in



7.3 Theoreti
al des
ription 73this pi
ture to an additional 
ux quantum through the ring, so that their spa
ing onlydepends on the ring area. The experimentally observed �B � 7mT (
f. Fig. 7.2(
))
orresponds to a diameter of the AB ring of � 0:86�m. This is 
onsistent with the devi
edimensions extra
ted from the SEM photograph Fig. 7.1. Following this interpretationfurther, the 
ondu
tan
e maxima are expe
ted to shift to larger B �elds if the antidotdiameter is de
reased. Taking the approximate s
aling between Vg and depletion with sdfrom Kir
zenow et al. [48℄ allows a quantitative 
al
ulation of the expe
ted e�e
t.2 Thepredi
tion of this simple model is shown in Fig. 7.2(d) with dashed lines. Considering the
rude approximations made, the agreement with the experiment is remarkable.3The questions whi
h remain to be answered by a more detailed analysis 
on
ern thedeviations from this simple behavior: (1) How does the spa
ing of the maxima 
hangewith B? (2) Whi
h me
hanism is responsible for the dislo
ations of the maxima positions?7.3.2 Quantum me
hani
al 
al
ulationKir
zenow et al. [48℄ presented a quantum me
hani
al 
al
ulation using a transfer matrixte
hnique on a latti
e. The model potential both for the 
hannel and the antidot gateswas 
hosen4 asV (r) = � EF [r=a0 � (1 + s)℄2 for r < a0(1 + s)0 otherwise ; (7.1)with a0 = 0:05�m. Here r denotes the distan
e to the gate, and a0 the length s
ale overwhi
h the potential falls of from EF to 0, i. e. the di�useness of the potential. s is adimensionless parameter modeling the depletion width around the gates. For the gatesde�ning the 
hannel, s = s
 = 1 was used unless otherwise noti
ed. The 
ondu
tan
e wasobtained from the Landauer formula g = (e2=h)Tr(tty). The 
al
ulations were performedfor T = 0 and negle
ting impurity s
attering. Therefore the quantum me
hani
al approa
hmisses a smoothing of the data due to temperature and impurity e�e
ts.The results relevant for the further dis
ussion are reprodu
ed in Fig. 7.3. (a) shows themagneto
ondu
tan
e tra
e, (b) the variation of the maxima spa
ings, and (
) the posi-tions of the maxima with varying antidot diameter. The quantum me
hani
al 
al
ulation(heavy lines) qualitatively reprodu
es both the saturation of the peak spa
ings and themaxima dislo
ations observed experimentally. Chara
teristi
 deviations are the shift ofthe 
ondu
tan
e peak to higher B-�elds, and 
orrespondingly a shift of the �B versus B2To establish a relation between the antidot diameter and the 
y
lotron radius, the 
y
lotron orbit isassumed to pass the 
onstri
tion at a 
onstant potential 0:6EF . This parameter is adapted so that �Bmat
hes the experiment. Note that �B 
an only be slightly modi�ed by varying this parameter. Theslopes with 
hanging sd are hardly a�e
ted at all.3Note that Gould et al. [34℄ explained the shift of the 
ondu
tan
e maxima by the redu
ed velo
ity of aparti
le in the 
onstri
tion, whi
h also leads to a 
hange of the a
tion of an orbit. The simple AB pi
ture,however, explains already both the spa
ing of the maxima and their dependen
e on the antidot diameter.Therefore in this 
ontext no additional me
hanism has to be introdu
ed.4The ele
trostati
 potential indu
ed by the gates is relatively smooth. The e�e
tive single-parti
lepotential, however, gets steeper with in
reasing parti
le number. This has been shown in self-
onsistent
al
ulations for quantum dots [24℄ and is analogous to the situation in three-dimensional metal 
lusters [32,89℄. In the limit of high ele
tron densities, the e�e
tive potential is box-like. This ensures that the appliedgate voltage only determines the depletion region of the gate, whereas the potential steepness dependsmainly on the ele
tron density. For the ele
tron densities realized in the experiment, the 
hoi
e of themodel potential 
onsisting of a 
at 
entral region with steep walls is justi�ed.
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*Figure 7.3: Quantum results. (a) Magneto
ondu
tan
e. Thi
k: QM for sd = 2:05,thin: experiment with Vg = �1:44 V. The arrow indi
ates the 
ommensurability
ondition in the model potential. (b) Spa
ing of the maxima for sd = 2:05. The thinlines 
orrespond to the experimental 
urves of Fig. 7.2. (
) Positions of the maximain dependen
e of B and sd. Small boxes indi
ate dislo
ations, the large box gives theapproximate range of the 
orresponding experimental data of Fig. 7.2.
urve. The la
k of quantitative agreement 
ould be due to the model potential, whoseparameters were not adapted for a perfe
t �t. Note, however, that the 
entral positionof the peak does not 
oin
ide with the 
ommensurability 
ondition of the model potential(verti
al arrow). The origin of this deviation is un
lear.7.4 Semi
lassi
al des
ription of the 
ondu
tan
eThe initial motivation for a semi
lassi
al analysis of this system was to �nd out whetherthe variation of the maxima spa
ings and the dislo
ations with varying antidot diameterare genuine quantum e�e
ts, i. e., of higher than leading order in �h. This was 
laimed inRefs. [48, 34℄ with two arguments: (1) All 
lassi
al orbits found by the authors show adependen
e of the a
tion S on the magneti
 �eld B whi
h implies a de
rease of �B withlarger B. This 
ontradi
ts the experimental results. (2) The experiment is performed inthe regime of the �rst plateau of quantized 
ondu
tion. With just one mode transmitting,a semi
lassi
al approa
h seems questionable to the authors.In this 
hapter, the semi
lassi
al des
ription of the magneto
ondu
tan
e for the 
hannelsystem is derived. The results are 
ompared to the quantum me
hani
al data as wellas to the experimental �ndings. It is dis
ussed why the semi
lassi
al des
ription is { in
ontrast to the above arguments { able to explain all the experimentally observed features.Thereafter, the lower 
omputational e�ort of the semi
lassi
al ansatz is used to �t themodel potential parameters to the experiment. The 
lose relation of the tra
e formula tothe 
lassi
al dynami
s of the system �nally allows to explain all e�e
ts within a simple,intuitive pi
ture.



7.4 Semi
lassi
al des
ription of the 
ondu
tan
e 757.4.1 Landauer-B�uttiker or Kubo?Although the quantum me
hani
al results of the Landauer-B�uttiker and the Kubo for-malism have shown to be identi
al [12℄, the appropriate formulation for a semi
lassi
alapproximation has to be 
hosen.The Landauer-B�uttiker approa
h [54, 21℄ is valid for 
ompletely phase-
oherent devi
es
onne
ted to leads whi
h serve as ele
tron reservoirs. The 
ondu
tan
e of su
h a system 
anbe expressed in terms of the transmission 
oeÆ
ients between all the 
onta
t modes. Thisformalism holds for two-terminal measurements as well as for 
on�gurations in
luding more
onta
ts. The 
hannel with 
entral antidots 
onsists of a phase-
oherent \a
tive region"(the environment of the antidots), 
onne
ted by \leads" (the 
hannel itself). Sin
e theseleads are not phase 
oherent (their lengths ex
eed the phase 
oheren
e length), they 
annotbe 
onsidered as part of the devi
e. They are not in thermal equilibrium,5 so that theyare no 
onta
ts in the sense of the Landauer-B�uttiker formalism, either. This approa
h istherefore not appli
able to the present system.The Kubo approa
h des
ribes the 
ondu
tivities of homogeneous, ma
ros
opi
 samples.Sin
e the 
hannel is neither homogeneous nor ma
ros
opi
, it is not reasonable to de�nea 
ondu
tivity for this system. Nevertheless, the Kubo formalism is appli
able. This be-
omes 
lear 
onsidering a hypotheti
 system, namely a 2D latti
e with the 
hannel systemas its elementary 
ell. This setup is equivalent to the antidot latti
es regularly treatedwithin Kubo formalism. The 
ondu
tivities whi
h are 
al
ulated from the Kubo formularefer to the ma
ros
opi
 dimensions of the (hypotheti
al) latti
e. Sin
e the verti
ally se-parated elementary 
ells 
an not interfere be
ause of the 
hannel walls, and horizontallyseparated antidot dimers are further apart as `�, the 
lassi
al s
aling laws hold down toa single elementary 
ell of the latti
e, i. e. 
an be applied to the individual 
hannel witha pair of antidots. The 
ondu
tan
e of the individual 
hannel is therefore given by the
ondu
tivity in 
onne
tion with the size of the elementary 
ell. Sin
e the resistan
e of the
hannel itself is negligible, the relevant size is given by the a
tive region, i. e. the regionaround the antidots.In the following, the semi
lassi
al version of the Kubo transport formula Eq. (5.4) will beapplied to the 
hannel with antidots.7.4.2 The model potentialTo allow a 
omparison of the results, the quantum me
hani
al model potential is also usedfor the semi
lassi
al approa
h. Numeri
al stability, however, requires6 smooth se
ondderivatives of V (r). The model potential Eq. (7.1) has a dis
ontinuous se
ond deriva-tive between the 
at bottom and the quadrati
 wall. To remove this, a 
ubi
 spline isintrodu
ed in the transition region. The total potential is given byV (~r)EF = 8>><>>:(j~rj � s1)2 + �212 j~rj< (s1 ��=2)� 13�(j~rj � s2)3 (s1 ��=2) <j~rj< (s1 +�=2)0 (s1 +�=2) <j~rj (7.2)5This is espe
ially 
lear for high magneti
 �elds where the 
urrent is 
arried by edge states. The statesat the opposite edges of the 
hannel have di�erent Fermi energies in this regime.6This is due to the numeri
al s
heme implemented, whi
h simultaneously integrates the stability matrix.It will be presented in appendix A.



76 Chapter 7: The 
hannel with antidotswith ~r = r=a0, s1 = 1 + s and � = s2 � s. Throughout this 
hapter, � = 0:005 is used.This results in a di�eren
e to the pure paraboli
 
ase smaller than 2:1 � 10�6EF , whi
his negligible. The potential Eq. (7.2) is illustrated in Fig. 7.4. Unless otherwise noti
ed,
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Figure 7.4: Left: Modelpotential used for thesemi
lassi
al 
al
ula-tions. Right: Closeupof the transition region.Cubi
 spline 
orre
tion(solid) and the pie
ewiseparaboli
 
ase (dashed).the parameters are identi
al to those of the quantum 
al
ulation, i. e. a0 = 0:05�m ands = s
 = 1 for the gates de�ning the 
hannel. The depletion width of the antidot gates sdwas varied between 1.5 and 2.2. Following the approximated relation between sd and Vg inRef. [48℄, this 
orresponds to an e�e
tive antidot diameter between 0:35�m and 0:42�m.7.4.3 The periodi
 orbitsEx
ept for a few spe
ial 
ases, the periodi
 orbits of a system with smooth potential 
anonly be found numeri
ally. This stage involves the main numeri
al e�ort of a semi
lassi
alapproximation, so that some 
are redu
ing the 
omputation time is indi
ated. In ordernot to interrupt the dis
ussion, the 
orresponding te
hni
al (though important) detailsare given in appendix A. The 
entral idea is to implement a fast numeri
al di�erentialequation solver to integrate simultaneously the 
lassi
al equations of motion (EOM) anda redu
ed version of the monodromy matrix, the (2D) stability matrix fM . Starting withrandom initial 
onditions, a two-dimensional Newton-Raphson iteration using the infor-mation provided by fM 
onverges to the periodi
 orbits. These are followed with varyingB-�eld and antidot diameter using an adaptive extrapolation s
heme.
Figure 7.5: Six typi
al 
lassi
al periodi
 orbits in the
hannel system. Note that there are orbits breaking thesymmetries of the potential.

Although the potential is simple andsymmetri
, it gives rise to a large va-riety of distin
t periodi
 orbits, manyof them breaking the symmetry ofthe system. Some typi
al examplesare shown in Fig. 7.5. A

ording toSe
. 3.2, �nite temperature and impu-rity s
attering leads to a strong damp-ing of the 
ontributions of longer pe-riodi
 orbits to the tra
e sum. Sys-tems like the disk billiard (see 
hap-ter 4) or antidot latti
es [63, 41℄ onlyhave a small number of short periodi
orbits. In these 
ases the evaluation ofthe semi
lassi
al Kubo formula is espe-
ially easy, sin
e only a few 
ontributions are signi�
ant. In the 
hannel, unfortunately,the lengths of the orbits are nearly identi
al, so that mu
h more orbits 
ontribute to thetra
e sum.Most of the orbits do not exist over the whole parameter range, appearing and disappearing



7.4 Semi
lassi
al des
ription of the 
ondu
tan
e 77in orbit bifur
ations. Fig. 7.6 shows the typi
al behavior of Tr(fM ) of some orbits withvarying magneti
 �eld. The stru
ture of the 
lassi
al dynami
s is astonishingly ri
h,showing bifur
ations (whi
h 
orrespond to Tr(fM ) = 2) of various types and { when varyingthe antidot diameter sd { also of higher 
odimension. The number of orbits in
reasesrapidly with smaller antidot diameter (i. e., wider 
onstri
tion).
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0Figure 7.6: The dependen
e of Tr(fM ) of some periodi
 orbitson B and sd. The 
rossings of the line Tr(fM = 2) indi
atebifur
ations, where new orbits appear. The number of orbitsin
reases rapidly with smaller antidot diameter sd. The labelsof the orbits refer to a 
lassi�
ation in three generations, whi
hwill be used in Se
. 7.6.

The Poin
ar�e plot of the 
han-nel is given in Fig. 7.7. Theleftmost pi
ture shows the sta-bility island of a primitive or-bit, surrounded by 
hains ofstable and unstable orbits ofhigher repetition number, inthe \sea of 
haos". Varyingthe magneti
 �eld drives thesystem through a bifur
ation.The 
entral stable orbit be-
omes unstable, 
reating a pairof new stable orbits (rightmostpi
ture). This is the typi
alphase spa
e pi
ture of a perioddoubling (or pit
hfork) bifur-
ation.By 
he
king Tr(fM ) as inFig. 7.6, it was ensured thatno orbit was missed at a bi-fur
ation. All together, over60 orbits (not 
ounting thesymmetry-related ones) havebeen in
luded in the 
al
ula-tions. All relevant 
lassi
alproperties, namely the a
tions, periods, stabilities, velo
ity-velo
ity 
orrelation fun
tions,Maslov indi
es and degenera
ies were determined numeri
ally. The te
hni
al details arepresented in appendix A.2.
x

p
x

0.21153 0.21157 0.21160 0.21164 0.21167 0.21170B[T]≈Figure 7.7: Poin
ar�e plot of a small phase-spa
e region for sd = 1:9 for varyingB. From left to right: a stable orbit be
omes unstable, 
reating two new stable orbits.The stable orbits are surrounded by 
hains of stable and unstable orbits with higherrepetition number, whi
h is typi
al for systems with mixed phase spa
e.
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hannel with antidots7.4.4 Evaluating the tra
e formulaAs dis
ussed in Se
. 2.4, leading-order �h approximations diverge at bifur
ations. Thisspurious behavior 
an be removed by a lo
al higher-order expansion. To ensure both the
orre
t lo
al properties at the bifur
ation and the (Gutzwiller-) limit far from it, uniformapproximations 
an be used.Orbit tra
es like in Fig. 7.6 allow the identi�
ation of the types of bifur
ations present inthe 
hannel system. Varying the magneti
 �eld both tangent and period doubling bifur
a-tions o

ur. If additionally the antidot diameter is 
hanged, bifur
ations of 
odimension2 show up as well. The expli
it formulas for the uniform approximation of tangent bifur-
ations are given in appendix B by Eqs. (B.7) and (B.8). Eq. (B.15) applies to pit
hforkbifur
ations. The next se
tion deals with the impli
ations that these expressions do notonly 
ontain information about the 
lassi
al periodi
 orbits, but also in
lude the 
ontri-bution of ghost orbits, i. e., analyti
 
ontinuations of orbits beyond the regime where they
lassi
ally exist.7.4.4.1 Numeri
al implementation of the uniform approximationThe formulas for the uniform bifur
ation 
annot be applied dire
tly to the system 
on-sidered here. First, the 
hannel has dis
rete symmetries, whereas these formulas applyto the generi
, symmetry-free 
ase. The dis
rete symmetry modi�es the behavior of theperiod doubling bifur
ation. Its generi
 form 
onsists of a 
entral orbit whi
h 
hangesits stability (from stable to unstable or vi
e versa), splitting o� a new orbit with twi
ethe period. In the 
hannel system, in 
ontrast, two symmetry-related orbits with thesimple period split o� (
f. Fig. 7.7 for a Poin
ar�e plot). The total Gutzwiller amplitudes,however, are identi
al for the symmetri
 and the generi
 situation. The fa
tor 2 from thedouble period in the generi
 
ase is repla
ed by the degenera
y fa
tor 2 stemming from thesymmetry. In
luding the degenera
ies 
orre
tly, the uniform approximation of S
homerusand Sieber 
an be applied to the 
hannel system.The se
ond problem 
on
erns the numeri
al implementation of the uniform approximation.The information about the ghost orbits whi
h 
ontribute to the analyti
al formulation isnot available if the 
lassi
al equations of motion are integrated numeri
ally. This preventsthe appli
ation of the uniform approximation to the 
omplex side of the bifur
ation. Thiswork suggest a modi�ed s
heme, whi
h retains the 
orre
t limiting 
ases, but requiresonly information about real orbits. It 
onsists of a lo
al approximation at the bifur
ation,whi
h is adapted to both the lo
al form of the uniform approximation and the limit onthe far 
omplex side (whi
h is simply the Gutzwiller 
ontribution of the remaining realorbits). The te
hni
al details of the pro
edure are presented in Appendix B.7.4.4.2 The in
uen
e of the bifur
ationsAs 
an be dedu
ed from the analyti
al lo
al form, the 
ontributions of the orbits engagedin a bifur
ation are in
reased by a fa
tor �h�Æ. The exponent depends on the type of thebifur
ation; for the tangent bifur
ation Æ = 1=6, and for the period doubling bifur
ationÆ = 1=4 [70℄. This shows that bifur
ations are of leading order in �h and dominate inthe semi
lassi
al limit �h=S ! 0 (with S being the a
tion of a typi
al periodi
 orbit inthe system). Therefore it has to be 
he
ked whether the bifur
ations have an in
reasedin
uen
e on the 
ondu
tan
e of the 
hannel system.



7.4 Semi
lassi
al des
ription of the 
ondu
tan
e 79Fig. 7.8(a) shows the tra
e of the (redu
ed) stability matrix Tr( eM) of three periodi
 orbitstaking part in two su

essive bifur
ations (where Tr( eM) = 2) under variation of the mag-neti
 �eld strength B. At eB � 0:21 a tangent bifur
ation, and at eB � 0:225 a pit
hfork
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(2)Figure 7.8: (a) Tr( eM) (note the nonlinear s
ale!) versus magneti
 �eld B for three
hara
teristi
 periodi
 orbits. (b) Contribution of the three orbits to ÆGxx; dotted line:semi
lassi
al Kubo formula, solid line: uniform approximation. (
) same as (b) butfor a system with 10 times larger a
tions. The right box illustrates the orbits engagedin the bifur
ations. Note the tiny di�eren
es to orbit 2.bifur
ation shows up. Fig. 7.8(b) gives the 
ontribution to the 
ondu
tan
e of the orbitsengaged in the bifur
ations. The dotted line 
orresponds to the result of the semi
lassi
alKubo formula Eq. (5.4). The amplitudes are diverging at the bifur
ations. The uniformapproximation (solid line) removes, as expe
ted, the divergen
es. Fig. 7.8(
) representsthe 
orresponding data for a system s
aled to have 10 times larger a
tions, thus being
loser to the semi
lassi
al limit. Even then, the amplitudes of the uniform approximationare nearly 
onstant over the bifur
ations. This shows that the bifur
ations have no lo
allydominant in
uen
e on the 
ondu
tan
e of the present system.Having established this result, the semi
lassi
al approximation 
an be further simpli�ed.Whereas for individual orbits a uniform treatment of the bifur
ations is vital, their in
u-en
e be
omes smaller if a larger number of orbits is in
luded. This is demonstrated inFig. 7.9, where ÆGxx has been 
al
ulated in
luding all relevant (� 60) periodi
 orbits. Thethin line gives the standard Gutzwiller-like approa
h in leading order in �h a

ording toEq. (5.4). The sharp divergen
es 
orrespond to bifur
ations of various orbits in
luded inthe tra
e sum. The di�eren
e to the uniform result7 (solid) is mu
h less pronoun
ed thanin Fig. 7.8.The in
uen
e of higher-order �h 
orre
tions on the result of Gutzwiller-like tra
e formulaehas been dis
ussed in Se
. 3.3. There it was pointed out that �h 
orre
tions do not only7The numeri
al uniform approximation was additionally treated with the folding pro
edure of Se
. 3.3.2to handle the spurious divergen
ies stemming from the bifur
ations with 
odimension 2. Those were notin
luded in the numeri
al uniform approximation.
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Figure 7.9: ÆGxx for sd = 1:88 using the semi
lassi
al Kubo formula either dire
tly(thin) or with additional folding over B (dashed). The uniform approximation 
orre-sponds to the heavy solid line. Maxima are marked with diamonds (folded Kubo) andtriangles (uniform).lead to additional terms in the tra
e sum, but also require an adaption of the smoothings
heme. This applies, as pointed out there, also to bifur
ations. The 
orre
t in
lusion of�nite temperature and impurity s
attering is possible using the folding approa
h presentedin Se
. 3.3.2. This pro
edure implements the smoothing in higher order in �h, but it does notin
lude higher-order �h terms to the tra
e formula. Comparing the uniform approximationwith the results of the semi
lassi
al Kubo formula in 
ombination with the folding approa
htherefore permits an examination of the e�e
ts of the higher-order �h terms introdu
ed bythe bifur
ations.The dashed line in Fig. 7.9 shows the result of the folding approa
h. It removes thespurious divergen
ies at the bifur
ations, and the remaining dis
repan
y to the uniformtreatment is small. This is in strong 
ontrast to Fig. 7.8, where only a few orbits arein
luded. The semi
lassi
al result therefore depends only little on the 
orre
t treatment ofthe bifur
ations if many orbits are in
luded. From this observation it 
an be dedu
ed thatthe higher-order �h 
orre
tions from the di�erent bifur
ations interfere mostly destru
tively.This e�e
t has already been observed in the study of the disk billiard in 
hapter 4.In parti
ular, the in
uen
e of the bifur
ations on the maximum positions (marked bydiamonds and triangles in Fig. 7.9) is small. Therefore the semi
lassi
al des
ription 
anbe further simpli�ed by using the tra
e formula Eq. (5.4) with additional 
onvolution overB. This will be done in the following.7.5 Semi
lassi
al resultsThe dis
ussion of the simple Aharonov-Bohm (AB) pi
ture in Se
. 7.3.1 has shown that theobservations whi
h still need to be explained are the dependen
e of the maximum spa
ingson B, and the dislo
ations of the maxima positions with varying antidot diameter. Thiswill be dis
ussed in Se
. 7.5.3 and 7.5.4, respe
tively. Before that, a 
loser look at theexperimental results will be taken.7.5.1 Fourier 
omponents of the quantum os
illationsThe semi
lassi
al tra
e formula Eq. 5.4 has the stru
ture of a Fourier sum, with theperiodi
 orbits as individual Fourier 
omponents. If the semi
lassi
al approa
h is justi�ed



7.5 Semi
lassi
al results 81and a formula of this type des
ribes the quantum os
illations, the tra
es of the 
lassi
alorbits should be visible in a Fourier transform of the experimental data. This te
hniquehas evolved to a standard approa
h for extra
ting the in
uen
e of the 
lassi
al phasespa
e stru
ture on quantum os
illations. Prominent 
al
ulations of this type in
lude theRydberg spe
trum of hydrogen [92℄ and of larger atoms [52℄. This powerful method shallnow be applied to the 
hannel system in order to 
he
k whether the quantum os
illationsshow indi
ations for the in
uen
e of 
lassi
al orbits.
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omparison with Figs. 7.2and 7.13, the frequen
y is given in units of the 
or-responding maxima spa
ing. O�set for 
larity.

For su
h an analysis to be rigidly valid,a s
aling law for the a
tions of theperiodi
 orbits must hold. The ob-served 
ondu
tan
e os
illations resem-ble Aharonov-Bohm os
illations. Thea
tion of the 
orresponding orbits, the
y
lotron orbits, s
ales like S = �B.Taking the Fourier transform of Gxxwith respe
t to B, orbits with this s
al-ing property show up as sharp peaks.Fig. 7.10 shows Fourier spe
tra8 of theexperimental data with respe
t to Bfor di�erent antidot voltages. For largeantidots (large negative voltage on theantidot gates) one dominant frequen
y
an be observed. With de
reasing an-tidot diameter, the 
orresponding peakshrinks and �nally disappears. Simul-taneously, a new peak develops at smaller �B. For Vg � �1:24 V both peaks haveapproximately equal strength. With de
reasing antidot diameter, both peaks move tolarger �B.The width of the peaks in Fig. 7.10 is not restri
ted by the �nite resolution of the Fouriertransform. This does not ne
essarily 
ontradi
t a semi
lassi
al interpretation. The broad-ening might be 
aused by orbits whose a
tion s
ales only approximately like S = �B. Thewidths of the peaks 
an also be explained by many orbits whi
h 
ontribute, ea
h with aslightly di�erent frequen
y. The Fourier data therefore neither gives a 
lear indi
ation ofperiodi
 orbits 
ontributing to the quantum os
illation, nor does it ex
lude this possibility.The os
illations in Gxx seen in experiment (
ompare to Fig. 7.2) are nearly sinusoidal, sothat one might expe
t that a single periodi
 orbit is responsible for the e�e
t. The aboveFourier analysis of the data shows, however, that at least two orbits 
ontribute to thequantum os
illations.7.5.2 The 
ondu
tan
e variation with BFig. 7.11 
ompares the semi
lassi
al result for the os
illating part of the 
ondu
tan
e withthe experimental9 data.8To 
learly separate out the regime of interest around the 
ommensurability peak, a triangular windowfun
tion was used. The magneti
 �eld range 
onsidered was B = 0 : : : 0:5 T.9To extra
t the os
illating part of the 
ondu
tan
e from the the experimental data, the smooth partwas 
al
ulated by 
onvolution with a Gaussian with � = 0:004 T. The di�eren
e to the original data givesÆGxx.
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Figure 7.11: Semi
lassi
al (solid) and experimentaldata (dashed) for ÆGxx. The arrows indi
ate the 
om-mensurability 
ondition; o�set for 
larity. (a) Largeantidot diameter. Semi
lassi
s: sd = 2:06, experiment:Vg = �1:48 V. (b) Intermediate antidot diameter.Semi
lassi
s: sd = 1:91, experiment: Vg = �1:38 V.
The semi
lassi
al result shows { apartfrom small shift towards higher mag-neti
 �elds { qualitatively the samebehavior as the experimental data.Although using an identi
al modelpotential, this shift is 
onsiderablysmaller than for the quantum 
al
u-lation (
ompare to Fig. 7.3). Theorigin of this dis
repan
y betweenthe two theoreti
al des
riptions is un-
lear. Please note in this 
ontextthat the quantum 
al
ulation in 
on-trast to the semi
lassi
al approa
hdoes not reprodu
e the 
orre
t po-sition of the 
lassi
al 
ommensura-bility peak. This is 
lear 
ompar-ing Figs. 7.3 and 7.11, where the
ommensurability 
onditions are indi-
ated by verti
al arrows.The numeri
al e�ort involved in the semi
lassi
al 
al
ulation is 
onsiderably smaller thanfor the quantum approa
h. It is low enough to make a �t of the model potential to theexperimental �ndings feasible. For this task three parameters of the model system havebeen varied, namely the overall system size and the depletion widths of the 
hannel andantidot gates, s
 and sd. Sin
e the 
lassi
al dynami
s are size-independent, the s
aling ofthe system with a fa
tor � in 
oordinate spa
e 
an simply be performed by repla
ing inEq. (5.4) the a
tion S with �S and the magneti
 �eld B with ��1B. To 
hange s
, theperiodi
 orbits have to be adapted to the new potential using the same s
heme alreadyemployed when varying B or sd (see appendix A.3).Fig. (7.12) shows the semi
lassi
al 
ondu
tan
e for s
 = 1:5 and sd = 1:5 for a systems
aled with � = 1:075, i. e. s0 = 0:05375�m. This size is still in agreement with theSEM pi
ture Fig. 7.1. The adapted model potential removes the mismat
h between thesemi
lassi
al and the experimental �ndings, resulting in a quantitative10 agreement of thesemi
lassi
al ÆGxx with the experimental data.
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Figure 7.12:Adapting the parame-ters of the model po-tential. Solid: experi-ment for Vg = �1:50V ,dashed: semi
lassi
s fors
 = 1:5, sd = 1:5, ands0 = 0:05375�m.The following 
al
ulations return to the parameters of the quantum approa
h in order tohave the two theoreti
al methods on the same basis.10Note that the amplitudes are, as usual in semi
lassi
al 
al
ulations, adapted.
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ing
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Figure 7.13: The spa
ing of the maxima in dependen
eof B. Thin lines, open symbols: experiment. Heavylines, �lled symbols: semi
lassi
s. (a) Large antidotdiameters. Experiment: Vg = �1:42 : : :�1:5 V, semi-
lassi
s: sd = 2:05 : : : 2:07. (b) Medium antidot diame-ters. Experiment: Vg = �1:3 : : :�1:36 V, semi
lassi
s:sd = 1:88 : : : 1:92.

Fig. 7.13 
ompares the variation ofthe maximum spa
ings of the semi-
lassi
al des
ription (heavy lines and�lled symbols) to the experimentaldata11 (thin lines and open sym-bols). For large (a) as well as for in-termediate antidot diameter (b) theaverage spa
ing of the maxima isnearly 
onstant in B, only slightlyde
reasing for stronger �elds. This is
learly reprodu
ed by the semi
lassi-
al approa
h. The mean spa
ing is {both experimentally and in the semi-
lassi
al des
ription { una�e
ted by
hanges of the antidot diameter. Themaxima spa
ings, however, do notvary smoothly, but show random-likevariations for small 
hanges in eitherB or sd. Large antidots (Fig. 7.13(a))give rise to a more regular pat-tern than smaller antidot diameters(Fig. 7.13(b)). The amount of vari-ation is 
orre
tly reprodu
ed by thesemi
lassi
al des
ription. The quan-tum 
al
ulation in Fig. 7.3(b) showsless agreement with the experimental data. This is again due to the shift of the quantumGxx to larger magneti
 �elds, whi
h was already observed in Se
. 7.3.2.The good agreement of the semi
lassi
al predi
tion of the maximum spa
ings with theexperimental �ndings is surprising, sin
e the 
ontributions of the individual orbits show adi�erent behavior. This is illustrated in Fig. 7.14. All individual orbits (thin lines) show a
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*Figure 7.14: Thi
k lines and symbols: Experimentalmaxima spa
ings as in Fig. 7.13(a). Thin lines: Max-ima spa
ings from the 
ontributions of some individualorbits for Sd = 2:06.
strong de
rease of �B with stronger�elds. This does not agree with theexperimental �ndings for the spa
ing(heavy lines and symbols). This ob-servation was one of the argumentsof Ref. [48℄, leading to the 
on
lu-sion that the magneto
ondu
tan
e ofthe 
hannel is not a

essible to semi-
lassi
al approximations. The solu-tion to this apparent 
ontradi
tion isthat in the present system not a feworbits dominate the quantum os
illa-tions, but many of them 
ontributewith 
omparable amplitudes, a
tions11The maxima positions were determined from the experimental ÆB. A 
ubi
 spline �t was used tointerpolate between the measured points. The latter were taken ea
h 0:5 mT.
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hannel with antidotsand periods. Varying the magneti
 �eld, the individual orbits 
hange their �B. Simultane-ously, the orbit stabilities (and thus the relative amplitudes) are a�e
ted. In 
ombination,the two e�e
ts lead to the weak variation of �B plotted in Fig. 7.13.The semi
lassi
al analysis is, as depi
ted in Fig. 7.13, also able to reprodu
e the amountof short-range variation of the maximum spa
ings. This shows that the e�e
t is notdue to experimental noise, but re
e
ts the physi
al properties of the system. The basi
me
hanism 
an easily be understood within the semi
lassi
al pi
ture. As pointed outabove, the in
uen
e of the individual orbits varies strongly with both magneti
 �eld andantidot diameter. Small 
hanges in these parameters therefore 
an lead to signi�
antshifts of the maxima positions. The more the orbits di�er geometri
ally, the larger are the
hanges in ÆB indu
ed by tiny 
hanges of the parameters. For larger antidot diameter, i. e.narrow 
onstri
tions, the 
lassi
al orbits get more and more similar to ea
h other. Thisni
ely explains the in
reased short-range variations of ÆB for smaller antidots.Both the sinusoidal form of the experimental ÆGxx and the Fourier analysis were 
onsis-tent with the pi
ture that just a few orbits 
ontribute signi�
antly to the tra
e sum. Theanalysis of the maxima spa
ings, however, shows that the idea to tra
e down the mag-neto
ondu
tan
e features to the properties of one or two single orbits must be reje
ted.The observed behavior depends on the subtle interplay between 
hanges in the 
lassi
alstabilities and in the a
tions of a large number of similar orbits.7.5.4 Variation of the antidot diameterThe se
ond question formulated in Se
. 7.3.1 
on
erns the dislo
ations whi
h o

ur in thepositions of the 
ondu
tan
e maxima when varying the antidot diameter. Fig. 7.15(a)shows the predi
tions of the semi
lassi
al approa
h. The points represent the 
al
ulatedmaxima positions, the thin lines are just a guide for the eye. The semi
lassi
al des
ription
learly reprodu
es the dislo
ations (small boxes). This shows that the dislo
ations are nogenuine quantum e�e
t, but a

essible by semi
lassi
 methods.
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Figure 7.15: (a) Result of thesemi
lassi
al analysis for the posi-tions of the 
ondu
tan
e maximawith varying magneti
 �eld B andantidot diameter sd (dots). Thinlines 
onne
ting the points are justto guide the eye. The 
orrespond-ing experimental data is shown inFig. 7.2. The gray-shaded lines 
or-respond to lo
i of orbit bifur
ations(see Se
. 7.6, p. 86). (b) Lo
al be-havior around a dislo
ation. Lines:semi
lassi
al result of the dashedbox in (a), points: experimentaldata around the dislo
ation markedwith the dashed box in Fig. 7.2.Fig. 7.15(b) illustrates the lo
al behavior around a dislo
ation. The lines 
orrespond tothe semi
lassi
al result (dashed box in Fig. 7.2(a)), the points give the experimental dataof Fig. 7.2(d). The values of B and sd have been shifted slightly, but no res
aling wasused. The ex
ellent agreement shows that the lo
al behavior at a bifur
ation is not onlyqualitatively, but even quantitatively explained within the the semi
lassi
al des
ription.



7.6 Semi
lassi
al interpretation 857.6 Semi
lassi
al interpretationThe last se
tion 
on�rmed that the semi
lassi
al approa
h is able to explain all observedmagneto
ondu
tan
e features of the 
hannel with 
entral antidots. The semi
lassi
al te
h-nique has two main advantages 
ompared to quantum 
al
ulations. The �rst bene�t, theredu
ed numeri
al e�ort, has already been exploited above. It was therefore possible to
al
ulate the data on a �ne grid, and even to adapt the system parameters. Su
h a taskis in prin
iple not impossible in a quantum approa
h, but frequently the numeri
al e�ortis prohibitive.The se
ond advantage of semi
lassi
al des
riptions is that they express quantum os
illa-tions in terms of 
lassi
al quantities. Sin
e human intuition is strongly based on 
lassi
alphysi
s, the insight gained in the nature of these interferen
e e�e
ts is enlarged by asemi
lassi
al des
ription. The resulting intuitive pi
ture might also be helpful for thedevelopment of new devi
es, serving as a guiding line how to design a sample to a
hieve
ertain desired properties. This se
tion exploits the 
lose relation of the tra
e formulato the 
lassi
al dynami
s of the system to give an intuitive pi
ture of the origin of themaxima dislo
ations.The di�erent periodi
 orbits of the system have di�erent degrees of similarity. A reasonableway of splitting them in groups is to 
onsider always those orbits together whi
h are 
loselyrelated, i. e., have bifur
ations with ea
h other in the parameter range observed. Theseorbit groups will be 
alled families12. Fig. 7.6 shows the tra
es of the orbits belonging tosu
h a family, illustrating their 
lose internal relation.To understand the nature of the e�e
t leading to the dislo
ations, a model system withonly the orbits of this family will be 
onsidered for the moment. In Fig. 7.16(
) the squaresgive the positions of the 
ondu
tan
e maxima for this model system. This redu
ed systemalready shows all the 
hara
teristi
 features observed in the experiment (see Fig. 7.2).It espe
ially exhibits the dislo
ations of the 
ondu
tan
e maxima (boxes) whi
h are sofar reprodu
ed, but unexplained. As illustrated in Fig. 7.6, the members of the family
an be divided into three generations, depending on whether an orbit is o�spring of theorbit 1, 2 or 3. These are, for obvious reasons, 
alled grandparents, parents, and 
hildrengeneration. All members within a generation behave nearly identi
al, thus justifying the
lassi�
ation. In Fig. 7.16(a) and (b) the maxima of the 
ontributions of the grandparentand the 
hildren generation to the 
ondu
tan
e is shown. All generations13 indu
e nearlyequidistant maxima in B with a 
onstant shift to larger B if the antidot diameter isredu
ed. This in 
omplete agreement with the simple Aharonov-Bohm pi
ture dis
ussedin Se
. 7.3.1. The behavior of the individual generations is therefore readily interpreted interms of their geometri
al properties. This implies, that the 
ontributions of the individualgeneration do not show dislo
ations. These must be due to the interplay of the di�erentgenerations.The 
hildren have a larger semi
lassi
al amplitude than the grandparents. Therefore themaxima of the total Gxx (i. e. in
luding all generations) follow the 
hildrens' maximawhere the latter exist. Otherwise, the maximum positions of the 
omplete family agreewith those of the grandparents. This is 
on�rmed by Fig. 7.16(d). The parents' in
uen
e12These families are not to be 
onfused with the families of degenerate orbits o

urring in systems with
ontinuous symmetries.13This holds also for the parents generation. It is is not shown separately, sin
e its 
ontribution isnegligible throughout.
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Figure 7.16: The positions of the 
ondu
tan
e maxima due to di�erent orbitgenerations of the family shown in Fig. 7.6: (a) grandparents, (b) 
hildren, (
) allgenerations. The parents' 
ontribution is not shown separately, sin
e it is negligible.(d) Blow-up from (a)-(
). The maxima of the total ÆGxx (squares) follow the maximaof the 
hildren (
rosses) where these exist, and those of the grandparents (triangles)otherwise. Heavy lines indi
ate the lo
i of bifur
ations in the (sd; B) plane.was found to be negligible throughout. The geometri
 di�eren
es between grandparentsand 
hildren orbits lead to di�erent dependen
ies on the antidot diameter and the mag-neti
 �eld strengths. Therefore the generations show di�erent maxima spa
ings as well asdi�erent slopes of the maxima with varying sd. Neither the slopes nor the spa
ings mat
halong the generation boundaries. This is similar to growing two materials with di�erentlatti
e 
onstants onto ea
h other. The resulting latti
e defe
ts are the equivalent of thedislo
ations observed.From this interpretation, further predi
tions 
an be dedu
ed: (i) S
aling the system doesnot a�e
t the 
lassi
al dynami
s, so that the dislo
ations move along the (universal) bi-fur
ation lines. (ii) Assuming a linear dependen
e of the a
tion di�eren
e �S between
hildren and grandparents on sd, the dislo
ations are equally spa
ed in sd. (iii) S
al-ing S with a fa
tor �,14 the distan
es between dislo
ations s
ale a

ording to �sd / �.These predi
tions are 
he
ked in Fig. 7.17, where the maxima positions of the system ofFig. 7.16(d), s
aled with a fa
tor of 2 (a) and 3 (b), are shown. The dislo
ations moveindeed on the bifur
ation line. They o

ur approximately at the predi
ted values of sd,whi
h are marked by pins.In the full 
al
ulation with over 60 orbits, the various families with their bifur
ationstru
tures (gray lines in Fig. 7.15(
)) are superimposed. Only those dislo
ations survivefor whi
h the above model s
enario is lo
ally dominating and no further orbits interfere.As a result, some of the dislo
ations disappear, some are slightly shifted in the (sd; B)14This 
orresponds to s
aling the size with � and the magneti
 �eld with ��1.
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Figure 7.17: The system of Fig. 7.16(d), s
aled by a fa
tor of � = 2 (a) and � = 3(b). The thin lines are guide to the eye. The magneti
 �eld is s
aled with � to simplifythe 
omparison with Fig. 7.16. The bifur
ation lines (and thus the region where the
hildren exits) are indi
ated by thi
k lines. Dislo
ations are marked with boxes. Thepins 
orrespond to the predi
tion of the lo
ation of the dislo
ations given in the maintext.plane. Therefore, no unique one-to-one relation between dislo
ations and bifur
ations 
anbe established. Nevertheless, the qualitative pattern remains the same.
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This interpretation suggests that there aretwo orbit groups with di�erent behaviorspresent, their interplay being responsible forthe dislo
ations of the maxima positions ob-served. This is in 
omplete agreement withthe Fourier analysis of the experimental datashown in Fig. 7.10, whi
h shows two dis-tin
t peaks. The Fourier transform of thesemi
lassi
al data for the individual orbitsgenerations is given in Fig. 7.18. For largeantidot diameter the parents (dashed) havedominant Fourier 
omponents, as they ex-ist in a mu
h larger region in B 
omparedto the 
hildren (solid). For smaller antidots,the region where 
hildren orbits exist rapidlygrows, and due to their large semi
lassi
al amplitude they soon dominate the Fourier spe
-trum. In the intermediate regime, two separate peaks 
an be observed. This is the samebehavior found in the Fourier analysis of the experimental data in Fig. 7.10, where apeak at ÆB � 7mT vanished for smaller antidots, and a new peak o

urred. The Fourieranalysis of the experimental data therefore supports the interpretation that the observedstru
ture in the maxima positions of the 
ondu
tan
e is due to the interplay between twoorbit generations.7.7 SummaryIn summary, the semi
lassi
al des
ription su

essfully reprodu
es all experimentally ob-served features of the magneto
ondu
tan
e of a mesos
opi
 
hannel with antidots. It wasadditionally demonstrated that the low numeri
al demands of the semi
lassi
al approxi-mation make a �t of the experimental potential possible.
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hannel with antidotsThe variations in the maxima spa
ings 
ould by reprodu
ed in every respe
t. The semi-
lassi
al approa
h yields the 
orre
t value for �B, together with the average behaviorwith varying �eld and antidot diameter. Furthermore, the predi
tions of the amount ofshort-range variation of �B in dependen
e of B and sd agree with the experimental �nd-ings. The semi
lassi
al pi
ture 
on�rms that these variations are not due to experimentalina

ura
ies, but re
e
t system properties.The dislo
ations of the 
ondu
tan
e maxima as fun
tions of magneti
 �eld B and antidotdiameter sd have been shown to be related to bifur
ations of the leading 
lassi
al periodi
orbits of the system. The dislo
ations are due to the fa
t that the bifur
ations de�nethe border lines between regimes of di�erent predominant orbit generations, leading todi�erent dependen
es of the 
ondu
tan
e maxima on B and sd. This indu
es the observeddislo
ations of the maximum positions, analogously to latti
e defe
ts at interfa
es. As the
lassi
al dynami
s are not a�e
ted by a res
aling of the system, the s
aling behavior ofthe dislo
ations 
an be easily understood in the semi
lassi
al approa
h.These results disprove previous arguments 
laiming the 
hannel system exhibits inherentquantum features. These arguments were based on the dis
ussion of the semi
lassi
al
ontributions of individual orbits. The semi
lassi
al pi
ture proposed here, in 
ontrast,
laims that the subtle interplay between many di�erent orbits, i. e. the variations in alltheir stabilities and a
tions under the 
hange of the system parameters, is responsible forthe observed magneto
ondu
tan
e features.The way how bifur
ations a�e
t the quantum os
illations in the 
hannel system is di�erentfrom previously reported me
hanisms. Using a numeri
al version of uniform approxima-tions, the bifur
ations of the system were shown to have no lo
ally enhan
ed in
uen
e onthe 
ondu
tan
e. In super-deformed nu
lei [10℄ or ellipti
 billiards [57℄, in 
ontrast, perioddoubling orbit bifur
ations in
uen
e the quantum shell stru
ture due to their dominantorder in 1=�h. The in
uen
e of the bifur
ations in the present system is also di�erent fromthe one reported for the resonant tunneling diode [114℄. There, the bifur
ations lead to adoubling of the period, whereas in the system 
onsidered here the periods of all relevantorbits are approximately 
onstant. Furthermore, in the resonant tunneling diode only afew orbits were found to be important, whereas the present system is dominated by amu
h larger number of orbits with nearly identi
al a
tions, periods and amplitudes.


