Chapter 7

The channel with antidots

This chapter studies the longitudinal magnetoconductance of a mesoscopic channel
with a central antidot dimer. The experimentally observed conductance oscillates in
dependence of both the magnetic field strengths and the antidot radius (requlated by the
applied gate voltage). The period of the oscillations i B is approzimately constant,
and the mazima positions exhibit characteristic dislocations when varying the anti-
dot diameter. This behavior was previously related to inherent quantum effects and
believed not to be accessible by semiclassical methods. The semiclassical description
developed in this chapter 1s able to reproduce qualitatively as well as quantitatively all
observed features. Additionally, it allows an intuitive explanation of the origin of the

mazima dislocations.
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Many physical observations in mesoscopic ballistic devices could successfully be explained
by the interference of classical orbits in the system. Among these are the Shubnikov-
de-Haas oscillations and the QHE of the free 2DEG discussed in the previous chapter,
the magnetoconductance oscillations of a 2DEG in an antidot superlattice [84, 55] and
those of a large circular quantum dot [62]. Also the current oscillations in a resonant
tunneling diode (RTD) [114] could be described in these terms. There is, however, an
ongoing discussion which effects can be treated using semiclassical methods, and which
are of genuine quantum origin (i.e. of higher than leading order in h).

The experimental observations of a mesoscopic channel with a central antidot molecule (a
dimer) have been reproduced by a quantum calculation [48]. The authors related the mea-
sured magnetoconductance features to inherent quantum effects. They therefore claimed
that the features are not accessible by semiclassical approximations. This motivates a
more detailed examination whether the observations of this system are really beyond the
limit of a semiclassical description.

A second reason for working out a semiclassical approximation of this structure is that
it has a mixed phase space. The bifurcations which occur in those systems lead to di-
vergencies in a leading-order h approximation. Much interest has been focused on the
implementation of bifurcations in semiclassical approximations (see for example Ref. [71]
and the references cited therein) and to track down their influence on experimental quan-
tum oscillations. In the RTD, for example, period-doubling bifurcations were found to
be responsible for a period doubling in the oscillations of the observed I-V curves [114].
The examination of the channel system will, as it exhibits bifurcations, contribute to this
discussion.

Finally, the quantum calculations for the channel were able to reproduce its main features.
They are, however, numerically so demanding that the dependence on the external vari-
ables could only be varied on a relatively coarse grid. For semiclassical calculations these
restrictions will be considerably less tight. Within such a description, even a fit of the
effective potential of the system could be feasible.

These three points make the channel system a real challenge to semiclassics.

7.1 The device

The device consists of electrostatic gates confining a high-mobility 2DEG in a GaAs/GaAlAs
heterostructure. The 2DEG was 82nm beneath the surface, its electron density was
ne & 3.47 x 101°m~2, and the mobility about 100m?V ~!s~!. The SEM picture of the

Figure 7.1: SEM photograph of
the gate structure. All gates were
contacted separately in a later '

o I 2 A
step.  For the experiments dis- ' 0.2um { @

$0.2um

cussed in this work, all channel 0.2um ]
gates are connected to the com-
mon gate voltage Vy, and the two
antidots are biased with Vy.

gate structure is shown in Fig. 7.1. Four metallized gates are used to define a long, narrow
channel (5um x1pm). Two circular gates with a diameter of 0.2um at a distance of 0.2um
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from each other and from the channel gates define the antidot dimer. All gates are indivi-
dually contacted using a bridge technique. Details about the device and its fabrication are
presented in [33, 48, 34] and the references cited therein. All measurements were taken at
T ~ 100mK using standard low-excitation AC-techniques. The magnetic field was applied
perpendicular to the 2DEG.

7.2 Experimental results

This extremely versatile device was used for a variety of different experiments. The con-
ductance was examined for the channel (using all four channel gates) and the half channel
(using only the left channel gates). The antidot gate voltages were varied from the open
channel to complete pinch-off, and the magnetic field range examined stretches from zero
field to the high-field regime, where the quantum mechanical edge channel picture gets
accurate. Applying gate voltages that pinch off all but one constriction establishes a quan-
tum point contact (QPC) in the system. A lot of work was dedicated to the measurement
of the quantized conductance effects of these QPCs. The corresponding experimental
plateaus were also used to approximately scale the antidot voltages to an effective deple-

tion width of both the antidots and the channel walls. Details on these experiments can
be found in Refs. [34, 33, 35, 48, 47, 67].

For the experiments considered in this work, an identical voltage V,, which was held fixed,
was applied to all channel gates. Both antidot gates were given the same bias voltage
Vg, which was the second parameter besides the magnetic field. The parameter range of
interest for this thesis corresponds to large antidots which overlap, so that the central
constriction is pinched off. The magnetic field is varied in the regime where the cyclotron
diameter of the classical electron motion is comparable with the channel width. In the
following, a short summary of the experimental findings relevant for this work will be
given.

Fig. 7.2(a) shows a typical magnetoconductance trace measured for large antidots. The
longitudinal conductance G, is near 4 conductance units e?/h for most field strengths,
dropping to approximately half the value in a sharp peak. The peak position corresponds to
the commensurability of the size of the antidot dimer and the classical cyclotron diameter
(marked with arrows)!. Note that this is completely analogous to the commensurability
peaks observed in antidot lattices [84, 55]. Fig. 7.2(b) gives a closeup of the peak (boxed
region in (a)). Superimposed on the peak, quantum oscillations with an approximately
constant period can be observed. This is studied in more detail in (c¢), where the spacings of
the neighboring conductance maxima are plotted as a function of B. The different curves
correspond to slightly different antidot voltages. The average spacing of the maxima is
nearly constant, only slightly decreasing with stronger fields. Superimposed on this smooth
trend random like variations are observed.

The unique design of the sample with individually contacted gates allows to change the
voltages of the antidots without affecting the other system properties. This was exploited
to measure the influence of the antidot diameter, which is directly related to the applied
voltage via the induced depletion width. Fig. 7.2(d) shows the influence of this parameter.
The points in the diagram correspond to the positions of the maximum of G,,. the solid

!The antidot size is determined by the lowest point of the saddle of the model potential (defined below
in Eq. (7.1), with sq = 2 and s4 = 1).
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Figure 7.2:  Ezperimental results. (a,b) Magnetoconductance trace for Vy, = —1.44V.
The wvertical arrows indicate the commensurability condition (see main tezt). (c)
Spacing of the conductance mazima for three gate voltages V, = —1.42...—1.5 V. (d)
Dots correspond the positions of the conductance mazima in dependence of B and V.
Solid lines are to guide the eye. Dashed lines are calculated from the simple picture
described in Sec. 7.3.1.

lines are just to guide the eye. For smaller antidot voltage the maxima move to stronger
fields. They shift mostly parallel, interrupted by characteristic dislocations (boxes).

7.3 Theoretical description

7.3.1 Intuitive discussion

Some of the observed effects can immediately be understood on an intuitive level. A simple
picture will clarify which of the features need more detailed discussion.

Since the central constriction is pinched off in the observed regime of antidot voltages,
two QPCs are formed between the channel wall and the antidots. The first plateau of
quantized conduction leads to a conductance of ¢?/h per constriction and per spin, so
that the value of 4e%/h is expected if no interference takes place between the QPCs. If the
cyclotron diameter equals the channel width, the electrons passing the lower constriction
can be focused back through the upper constriction, so that the conductance falls to
2¢2/h. Using the simple model potential defined below in Eq. (7.1), one can estimate the
central peak position by assuming that the orbits are cyclotron-like, passing the saddle
of the potential at the lowest point. A rough estimate of the peak width is given by
the magnetic field strengths where cyclotron orbits pass the constriction at Fermi energy.
These estimates are compared to the experimental G, in Fig. 7.2(a). The magnitude of
the conductance, the position of the conductance dip (vertical arrow), and also its width
(horizontal arrow) are in quantitative agreement with this simple consideration.

The oscillations superimposed on the peak may be explained in analogy to the Aharonov-
Bohm (AB) effect. Identifying cyclotron orbits around the two central antidots with
the AB ring, equidistant maxima in B are expected. Subsequent maxima correspond in
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this picture to an additional flux quantum through the ring, so that their spacing only
depends on the ring area. The experimentally observed AB = 7TmT (cf. Fig. 7.2(c))
corresponds to a diameter of the AB ring of ~ 0.86um. This is consistent with the device
dimensions extracted from the SEM photograph Fig. 7.1. Following this interpretation
further, the conductance maxima are expected to shift to larger B fields if the antidot
diameter is decreased. Taking the approximate scaling between V,, and depletion with sg4
from Kirczenow et al. [48] allows a quantitative calculation of the expected effect.? The

prediction of this simple model is shown in Fig. 7.2(d) with dashed lines. Considering the
crude approximations made, the agreement with the experiment is remarkable.?

The questions which remain to be answered by a more detailed analysis concern the
deviations from this simple behavior: (1) How does the spacing of the maxima change
with B? (2) Which mechanism is responsible for the dislocations of the maxima positions?

7.3.2 Quantum mechanical calculation

Kirczenow et al. [48] presented a quantum mechanical calculation using a transfer matrix

technique on a lattice. The model potential both for the channel and the antidot gates
was chosen? as

- —_ 12 ,

Vir) = { Eplr/ag— (1 +s)]" forr < ap(l+s) ’ (7.1)

0 otherwise

with ag = 0.05um. Here r denotes the distance to the gate, and ag the length scale over
which the potential falls of from Ep to 0, i.e. the diffuseness of the potential. s is a
dimensionless parameter modeling the depletion width around the gates. For the gates
defining the channel, s = s, = 1 was used unless otherwise noticed. The conductance was
obtained from the Landauer formula g = (e2/h)Tr(tt"). The calculations were performed
for T = 0 and neglecting impurity scattering. Therefore the quantum mechanical approach
misses a smoothing of the data due to temperature and impurity effects.

The results relevant for the further discussion are reproduced in Fig. 7.3. (a) shows the
magnetoconductance trace, (b) the variation of the maxima spacings, and (c) the posi-
tions of the maxima with varying antidot diameter. The quantum mechanical calculation
(heavy lines) qualitatively reproduces both the saturation of the peak spacings and the
maxima dislocations observed experimentally. Characteristic deviations are the shift of
the conductance peak to higher B-fields, and correspondingly a shift of the AB versus B

?To establish a relation between the antidot diameter and the cyclotron radius, the cyclotron orbit is
assumed to pass the constriction at a constant potential 0.6F . This parameter is adapted so that AB
matches the experiment. Note that AB can only be slightly modified by varying this parameter. The
slopes with changing sq are hardly affected at all.

3Note that Gould et al. [34] explained the shift of the conductance maxima by the reduced velocity of a
particle in the constriction, which also leads to a change of the action of an orbit. The simple AB picture,
however, explains already both the spacing of the maxima and their dependence on the antidot diameter.
Therefore in this context no additional mechanism has to be introduced.

*The electrostatic potential induced by the gates is relatively smooth. The effective single-particle
potential, however, gets steeper with increasing particle number. This has been shown in self-consistent
calculations for quantum dots [24] and is analogous to the situation in three-dimensional metal clusters [32,
89]. In the limit of high electron densities, the effective potential is box-like. This ensures that the applied
gate voltage only determines the depletion region of the gate, whereas the potential steepness depends
mainly on the electron density. For the electron densities realized in the experiment, the choice of the
model potential consisting of a flat central region with steep walls is justified.
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Figure 7.3:  Quantum results. (a) Magnetoconductance. Thick: QM for sq = 2.053,
thin: ezperiment with V, = —1.44 V. The arrow wndicates the commensurability
condition in the model potential. (b) Spacing of the mazima for sq = 2.05. The thin
lines correspond to the experimental curves of Fig. 7.2. (c) Positions of the mazima
i dependence of B and sg. Small bozes indicate dislocations, the large box gives the
approximate range of the corresponding experimental data of Fig. 7.2.

curve. The lack of quantitative agreement could be due to the model potential, whose
parameters were not adapted for a perfect fit. Note, however, that the central position
of the peak does not coincide with the commensurability condition of the model potential
(vertical arrow). The origin of this deviation is unclear.

7.4 Semiclassical description of the conductance

The initial motivation for a semiclassical analysis of this system was to find out whether
the variation of the maxima spacings and the dislocations with varying antidot diameter
are genuine quantum effects, i.e., of higher than leading order in A. This was claimed in
Refs. [48, 34] with two arguments: (1) All classical orbits found by the authors show a
dependence of the action S on the magnetic field B which implies a decrease of AB with
larger B. This contradicts the experimental results. (2) The experiment is performed in
the regime of the first plateau of quantized conduction. With just one mode transmitting,
a semiclassical approach seems questionable to the authors.

In this chapter, the semiclassical description of the magnetoconductance for the channel
system is derived. The results are compared to the quantum mechanical data as well
as to the experimental findings. It is discussed why the semiclassical description is — in
contrast to the above arguments — able to explain all the experimentally observed features.
Thereafter, the lower computational effort of the semiclassical ansatz is used to fit the
model potential parameters to the experiment. The close relation of the trace formula to
the classical dynamics of the system finally allows to explain all effects within a simple,
intuitive picture.
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7.4.1 Landauer-Buttiker or Kubo?

Although the quantum mechanical results of the Landauer-Biittiker and the Kubo for-
malism have shown to be identical [12], the appropriate formulation for a semiclassical
approximation has to be chosen.

The Landauer-Biittiker approach [54, 21] is valid for completely phase-coherent devices
connected to leads which serve as electron reservoirs. The conductance of such a system can
be expressed in terms of the transmission coefficients between all the contact modes. This
formalism holds for two-terminal measurements as well as for configurations including more
contacts. The channel with central antidots consists of a phase-coherent “active region”
(the environment of the antidots), connected by “leads” (the channel itself). Since these
leads are not phase coherent (their lengths exceed the phase coherence length), they cannot
be considered as part of the device. They are not in thermal equilibrium,® so that they
are no contacts in the sense of the Landauer-Biittiker formalism, either. This approach is
therefore not applicable to the present system.

The Kubo approach describes the conductivities of homogeneous, macroscopic samples.
Since the channel is neither homogeneous nor macroscopic, it is not reasonable to define
a conductivity for this system. Nevertheless, the Kubo formalism is applicable. This be-
comes clear considering a hypothetic system, namely a 2D lattice with the channel system
as its elementary cell. This setup is equivalent to the antidot lattices regularly treated
within Kubo formalism. The conductivities which are calculated from the Kubo formula
refer to the macroscopic dimensions of the (hypothetical) lattice. Since the vertically se-
parated elementary cells can not interfere because of the channel walls, and horizontally
separated antidot dimers are further apart as £, the classical scaling laws hold down to
a single elementary cell of the lattice, i.e. can be applied to the individual channel with
a pair of antidots. The conductance of the individual channel is therefore given by the
conductivity in connection with the size of the elementary cell. Since the resistance of the
channel itself is negligible, the relevant size is given by the active region, i.e. the region
around the antidots.

In the following, the semiclassical version of the Kubo transport formula Eq. (5.4) will be
applied to the channel with antidots.

7.4.2 The model potential

To allow a comparison of the results, the quantum mechanical model potential is also used
for the semiclassical approach. Numerical stability, however, requires® smooth second
derivatives of V(7). The model potential Eq. (7.1) has a discontinuous second deriva-
tive between the flat bottom and the quadratic wall. To remove this, a cubic spline is
introduced in the transition region. The total potential is given by

S (I FI< (31 = A/2)
By ) sa (17l = s2)®  (s1— A/2) <|F|< (s1 4+ A/2) (7.2
0 (s1+A/2) <|7]

®This is especially clear for high magnetic fields where the current is carried by edge states. The states
at the opposite edges of the channel have different Fermi energies in this regime.

5This is due to the numerical scheme implemented, which simultaneously integrates the stability matrix.
It will be presented in appendix A.
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with # = r/ag, s1 = 1+ s and A = s — s. Throughout this chapter, A = 0.005 is used.
This results in a difference to the pure parabolic case smaller than 2.1 * 107 Er, which
is negligible. The potential Eq. (7.2) is illustrated in Fig. 7.4. Unless otherwise noticed,

E Ay Figure 7.4: Left: Model
G potential used for the
ate semiclassical calcula-
tions. Right:  Closeup
E. : ] > of the transition region.
\T{/ N Cubic  spline  correction
‘ | S > Y/ < A< AP2 r/a, (solid) and the piecewise

0 s s+l 1/, g s+1 parabolic case (dashed).

the parameters are identical to those of the quantum calculation, i.e. ap = 0.05um and
s = 8. = 1 for the gates defining the channel. The depletion width of the antidot gates sq4
was varied between 1.5 and 2.2. Following the approximated relation between s; and V, in
Ref. [48], this corresponds to an effective antidot diameter between 0.35pm and 0.42pun.

7.4.3 The periodic orbits

Except for a few special cases, the periodic orbits of a system with smooth potential can
only be found numerically. This stage involves the main numerical effort of a semiclassical
approximation, so that some care reducing the computation time is indicated. In order
not to interrupt the discussion, the corresponding technical (though important) details
are given in appendix A. The central idea is to implement a fast numerical differential
equation solver to integrate simultaneously the classical equations of motion (EOM) and
a reduced version of the monodromy matrix, the (2D) stability matrix M. Starting with
random initial conditions, a two-dimensional Newton-Raphson iteration using the infor-
mation provided by M converges to the periodic orbits. These are followed with varying
B-field and antidot diameter using an adaptive extrapolation scheme.

eIES
31I€SS

Figure 7.5:  Siz typical classical periodic orbits in the

Although the potential is simple and
symmetric, it gives rise to a large va-
riety of distinct periodic orbits, many
of them breaking the symmetry of
the system. Some typical examples

are shown in Fig. 7.5. According to

Sec. 3.2, finite temperature and impu-
rity scattering leads to a strong damp-
ing of the contributions of longer pe-
riodic orbits to the trace sum. Sys-
tems like the disk billiard (see chap-
ter 4) or antidot lattices [63, 41] only
have a small number of short periodic

channel s'ystem. Note tha.t there are orbits breaking the orbits. In these cases the evaluation of
symmetries of the potential. ) ) )
the semiclassical Kubo formula is espe-
clally easy, since only a few contributions are significant. In the channel, unfortunately,
the lengths of the orbits are nearly identical, so that much more orbits contribute to the

trace sum.

Most of the orbits do not exist over the whole parameter range, appearing and disappearing
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in orbit bifurcations. Fig. 7.6 shows the typical behavior of Tr(]\Zf/ ) of some orbits with
varying magnetic field. The structure of the classical dynamics is astonishingly rich,

showing bifurcations (which correspond to Tr(M) = 2) of various types and when varying

the antidot diameter sg; — also of higher codimension. The number of orbits increases

rapidly with smaller antidot diameter (i.e., wider constriction).

The Poincaré plot of the chan-
nel is given in Fig. 7.7. The
leftmost picture shows the sta-
bility island of a primitive or-
bit, swrrounded by chains of
stable and unstable orbits of
higher repetition number, in
the “sea of chaos”. Varying
the magnetic field drives the
system through a bifurcation.
The central stable orbit be-
comes unstable, creating a pair
of new stable orbits (rightmost
picture). This is the typical
phase space picture of a period
doubling (or pitchfork) bifur-
cation. -

By checking Tr(M) as in
Fig. 7.6, it was ensured that
no orbit was missed at a bi-
furcation. All together, over
60 orbits (not counting the
symmetry-related ones) have
been included in the calcula-
tions.  All relevant classical
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Figure 7.6: The dependence of Ti(ﬂ) of some periodic orbits
on B and s;. The crossings of the line Tr(ﬂ = 2) indicate
bifurcations, where new orbits appear. The number of orbits
wncreases rapidly with smaller antidot diameter sq. The labels
of the orbits refer to a classification in three generations, which
will be used 1 Sec. 7.6.

properties, namely the actions, periods, stabilities, velocity-velocity correlation functions,

Maslov indices and degeneracies were determined numerically. The technical details are

presented in appendix A.2.

B[T]=0.21153 | 021157

021160 | 021164 0.21167 0.21170

Figure 7.7:  Poincaré plot of a small phase-space region for sq4 = 1.9 for varying
B. From left to right: a stable orbit becomes unstable, creating two new stable orbits.

The stable orbits are surrounded by chains of stable and unstable orbits with higher

repetition number, which is typical for systems with mized phase space.
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7.4.4 Evaluating the trace formula

As discussed in Sec. 2.4, leading-order A approximations diverge at bifurcations. This
spurious behavior can be removed by a local higher-order expansion. To ensure both the
correct local properties at the bifurcation and the (Gutzwiller-) limit far from it, uniform
approximations can be used.

Orbit traces like in Fig. 7.6 allow the identification of the types of bifurcations present in
the channel system. Varying the magnetic field both tangent and period doubling bifurca-
tions occur. If additionally the antidot diameter is changed, bifurcations of codimension
2 show up as well. The explicit formulas for the uniform approximation of tangent bifur-
cations are given in appendix B by Egs. (B.7) and (B.8). Eq. (B.15) applies to pitchfork
bifurcations. The next section deals with the implications that these expressions do not
only contain information about the classical periodic orbits, but also include the contri-
bution of ghost orbits, i.e., analytic continuations of orbits beyond the regime where they
classically exist.

7.4.4.1 Numerical implementation of the uniform approximation

The formulas for the uniform bifurcation cannot be applied directly to the system con-
sidered here. First, the channel has discrete symmetries, whereas these formulas apply
to the generic, symmetry-free case. The discrete symmetry modifies the behavior of the
period doubling bifurcation. Its generic form consists of a central orbit which changes
its stability (from stable to unstable or vice versa), splitting off a new orbit with twice
the period. In the channel system, in contrast, two symmetry-related orbits with the
simple period split off (cf. Fig. 7.7 for a Poincaré plot). The total Gutzwiller amplitudes,
however, are identical for the symmetric and the generic situation. The factor 2 from the
double period in the generic case is replaced by the degeneracy factor 2 stemming from the
symmetry. Including the degeneracies correctly, the uniform approximation of Schomerus
and Sieber can be applied to the channel system.

The second problem concerns the numerical implementation of the uniform approximation.
The information about the ghost orbits which contribute to the analytical formulation is
not available if the classical equations of motion are integrated numerically. This prevents
the application of the uniform approximation to the complex side of the bifurcation. This
work suggest a modified scheme, which retains the correct limiting cases, but requires
only information about real orbits. It consists of a local approximation at the bifurcation,
which is adapted to both the local form of the uniform approximation and the limit on
the far complex side (which is simply the Gutzwiller contribution of the remaining real
orbits). The technical details of the procedure are presented in Appendix B.

7.4.4.2 The influence of the bifurcations

As can be deduced from the analytical local form, the contributions of the orbits engaged
in a bifurcation are increased by a factor 7. The exponent depends on the type of the
bifurcation; for the tangent bifurcation § = 1/6, and for the period doubling bifurcation
§ = 1/4 [70]. This shows that bifurcations are of leading order in % and dominate in
the semiclassical limit /S — 0 (with S being the action of a typical periodic orbit in
the system). Therefore it has to be checked whether the bifurcations have an increased
influence on the conductance of the channel system.
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Fig. 7.8(a) shows the trace of the (reduced) stability matrix Tr(M) of three periodic orbits

taking part in two successive bifurcations (where Tr(M) = 2) under _variation of the mag-
netic field strength B. At B ~ 0.21 a tangent bifurcation, and at B ~ 0.225 a pitchfork

2000
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—
B -50
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— B[T] 0.21 0.22 0.23

Figure 7.8: (a) Tr(ﬁ) (note the nonlinear scale!) versus magnetic field B for three
characteristic periodic orbits. (b) Contribution of the three orbits to 8G,,; dotted line:
semiclassical Kubo formula, solid line: uniform approzimation. (c) same as (b) but
for a system with 10 times larger actions. The right box illustrates the orbits engaged
in the bifurcations. Note the tiny differences to orbit 2.

bifurcation shows up. Fig. 7.8(b) gives the contribution to the conductance of the orbits
engaged in the bifurcations. The dotted line corresponds to the result of the semiclassical
Kubo formula Eq. (5.4). The amplitudes are diverging at the bifurcations. The uniform
approximation (solid line) removes, as expected, the divergences. Fig. 7.8(c) represents
the corresponding data for a system scaled to have 10 times larger actions, thus being
closer to the semiclassical limit. Even then, the amplitudes of the uniform approximation
are nearly constant over the bifurcations. This shows that the bifurcations have no locally
dominant influence on the conductance of the present system.

Having established this result, the semiclassical approximation can be further simplified.
Whereas for individual orbits a uniform treatment of the bifurcations is vital, their influ-
ence becomes smaller if a larger number of orbits is included. This is demonstrated in
Fig. 7.9, where 0G,, has been calculated including all relevant (~ 60) periodic orbits. The
thin line gives the standard Gutzwiller-like approach in leading order in % according to
Eq. (5.4). The sharp divergences correspond to bifurcations of various orbits included in
the trace sum. The difference to the uniform result’ (solid) is much less pronounced than
in Fig. 7.8.

The influence of higher-order h corrections on the result of Gutzwiller-like trace formulae
has been discussed in Sec. 3.3. There it was pointed out that A corrections do not only

‘The numerical uniform approximation was additionally treated with the folding procedure of Sec. 3.3.2
to handle the spurious divergencies stemming from the bifurcations with codimension 2. Those were not
included in the numerical uniform approximation.
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Figure 7.9: 0G,, for sq = 1.88 using the semiclassical Kubo formula either directly
(thin) or with additional folding over B (dashed). The uniform approzimation corre-
sponds to the heavy solid line. Mazima are marked with diamonds (folded Kubo) and
triangles (uniform).

lead to additional terms in the trace sum, but also require an adaption of the smoothing
scheme. This applies, as pointed out there, also to bifurcations. The correct inclusion of
finite temperature and impurity scattering is possible using the folding approach presented
in Sec. 3.3.2. This procedure implements the smoothing in higher order in £, but it does not
include higher-order A terms to the trace formula. Comparing the uniform approximation
with the results of the semiclassical Kubo formula in combination with the folding approach
therefore permits an examination of the effects of the higher-order % terms introduced by
the bifurcations.

The dashed line in Fig. 7.9 shows the result of the folding approach. It removes the
spurious divergencies at the bifurcations, and the remaining discrepancy to the uniform
treatment is small. This is in strong contrast to Fig. 7.8, where only a few orbits are
included. The semiclassical result therefore depends only little on the correct treatment of
the bifurcations if many orbits are included. From this observation it can be deduced that
the higher-order & corrections from the different bifurcations interfere mostly destructively.
This effect has already been observed in the study of the disk billiard in chapter 4.

In particular, the influence of the bifurcations on the maximum positions (marked by
diamonds and triangles in Fig. 7.9) is small. Therefore the semiclassical description can
be further simplified by using the trace formula Eq. (5.4) with additional convolution over

B. This will be done in the following.

7.5 Semiclassical results

The discussion of the simple Aharonov-Bohm (AB) picture in Sec. 7.3.1 has shown that the
observations which still need to be explained are the dependence of the maximum spacings
on B, and the dislocations of the maxima positions with varying antidot diameter. This
will be discussed in Sec. 7.5.3 and 7.5.4, respectively. Before that, a closer look at the
experimental results will be taken.

7.5.1 Fourier components of the quantum oscillations

The semiclassical trace formula Eq. 5.4 has the structure of a Fourier sum, with the
periodic orbits as individual Fourier components. If the semiclassical approach is justified
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and a formula of this type describes the quantum oscillations, the traces of the classical
orbits should be visible in a Fourier transform of the experimental data. This technique
has evolved to a standard approach for extracting the influence of the classical phase
space structure on quantum oscillations. Prominent calculations of this type include the
Rydberg spectrum of hydrogen [92] and of larger atoms [52]. This powerful method shall
now be applied to the channel system in order to check whether the quantum oscillations
show indications for the influence of classical orbits.

For such an analysis to be rigidly valid,
a scaling law for the actions of the
periodic orbits must hold. The ob-
served conductance oscillations resem-
ble Aharonov-Bohm oscillations. The
action of the corresponding orbits, the
cyclotron orbits, scales like S = kB.
Taking the Fourier transform of Gy
with respect to B, orbits with this scal-
ing property show up as sharp peaks.

Fourier component [arb.u.]—

Fig. 7.10 shows Fourier spectra® of the

[a—
(=)

experimental data with respect to B 4 5 6 7

for different antidot voltages. For large AB[mT]—
antidots (large negative voltage on the Figure 7.10:  Fourier transform of the experimen-
antidot gates) one dominant frequency tal data in the range of the commensurability peak
can be observed. With decreasing an- B =0...0.5T. For easier comparison with Figs. 7.2

tidot diameter, the corresponding peak and 7.13, the frequency is given in units of the cor-
) ALy ) ok e

shrinks and finally disappears. Simul- responding mazima spacing. Offset for clarity.
taneously, a new peak develops at smaller AB. For V, ~ —1.24 V both peaks have
approximately equal strength. With decreasing antidot diameter, both peaks move to

larger AB.

The width of the peaks in Fig. 7.10 is not restricted by the finite resolution of the Fourier
transform. This does not necessarily contradict a semiclassical interpretation. The broad-
ening might be caused by orbits whose action scales only approximately like S = kB. The
widths of the peaks can also be explained by many orbits which contribute, each with a
slightly different frequency. The Fourier data therefore neither gives a clear indication of
periodic orbits contributing to the quantum oscillation, nor does it exclude this possibility.

The oscillations in Gxy seen in experiment (compare to Fig. 7.2) are nearly sinusoidal, so
that one might expect that a single periodic orbit is responsible for the effect. The above
Fourier analysis of the data shows, however, that at least two orbits contribute to the
quantum oscillations.

7.5.2 The conductance variation with B

Fig. 7.11 compares the semiclassical result for the oscillating part of the conductance with
the experimental® data.

8To clearly separate out the regime of interest around the commensurability peak, a triangular window
function was used. The magnetic field range considered was B =0...0.5 T.

9To extract the oscillating part of the conductance from the the experimental data, the smooth part
was calculated by convolution with a Gaussian with ¢ = 0.004 T. The difference to the original data gives

0G g
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The semiclassical result shows — apart
from small shift towards higher mag-
netic fields  qualitatively the same
behavior as the experimental data.
Although using an identical model

O0Gy«[arb.u.]—

potential, this shift is considerably
smaller than for the quantum calcu-
lation (compare to Fig. 7.3). The
origin of this discrepancy between
the two theoretical descriptions is un-

clear. Please note in this context

that the quantum calculation in con-

0.18 0.22 026 B[T]— trast to the semiclassical approach
) 4 ) ) ] does not reproduce the correct po-
Figure 7.11:  Semiclassical (solid) and experimental

data (dashed) for 6Gyy. The arrows indicate the com-
mensurability condition; offset for clarity. (a) Large
antidot diameter. Semiclassics: sq = 2.06, experiment:
Vy, = =148 V. (b) Intermediate antidot diameter. commensurability conditions are indi-
Semiclassics: sq = 1.91, experiment: V, = —1.38 V. cated by vertical arrows.

sition of the classical commensura-
bility peak. This is clear compar-
ing Figs. 7.3 and 7.11, where the

The numerical effort involved in the semiclassical calculation is considerably smaller than
for the quantum approach. It is low enough to make a fit of the model potential to the
experimental findings feasible. For this task three parameters of the model system have
been varied, namely the overall system size and the depletion widths of the channel and
antidot gates, s. and sg. Since the classical dynamics are size-independent, the scaling of
the system with a factor s in coordinate space can simply be performed by replacing in
Eq. (5.4) the action S with xS and the magnetic field B with ™' B. To change s, the
periodic orbits have to be adapted to the new potential using the same scheme already
employed when varying B or s, (see appendix A.3).

Fig. (7.12) shows the semiclassical conductance for s, = 1.5 and s; = 1.5 for a system
scaled with x = 1.075, i.e. sg = 0.05375 pm. This size is still in agreement with the
SEM picture Fig. 7.1. The adapted model potential removes the mismatch between the
semiclassical and the experimental findings, resulting in a quantitative!’ agreement of the
semiclassical 0G,, with the experimental data.

T

_g Figur¢ 7.12:

=] Adapting  the  parame-

Tg ters of the model po-

% tential. Solid:  experi-
ment for V, = —1.50V,
dashed:  semiclassics  for
s = 1.5, s4 = 1.5, and

sg = 0.05375um.

0.15 0.20 0.25 B[T]—>

The following calculations return to the parameters of the quantum approach in order to
have the two theoretical methods on the same basis.

"Note that the amplitudes are, as usual in semiclassical calculations, adapted.
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7.5.3 The maximum spacing

Fig. 7.13 compares the variation of
the maximum spacings of the semi-
classical description (heavy lines and
filled symbols) to the experimental
datall (thin lines and open sym-
bols). For large (a) as well as for in-
termediate antidot diameter (b) the
average spacing of the maxima is
nearly constant in B, only slightly
decreasing for stronger fields. This is
clearly reproduced by the semiclassi-
cal approach. The mean spacing is —
both experimentally and in the semi-
classical description — unaffected by
changes of the antidot diameter. The
maxima spacings, however, do not
vary smoothly, but show random-like
variations for small changes in either
B or s,4. Large antidots (Fig. 7.13(a))
give rise to a more regular pat-
tern than smaller antidot diameters
(Fig. 7.13(b)).

ation is correctly reproduced by the

The amount of vari-

semiclassical description. The quan-
tum calculation in Fig. 7.3(b) shows
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Figure 7.13:  The spacing of the mazima in dependence
of B. Thin lines, open symbols: experiment. Heavy

lines, filled symbols: semiclassics. (o) Large antidot
diameters. Ezperiment: V, = —1.42...-1.5 V, semu-
classics: sq = 2.05...2.07. (b) Medium antidot diame-
ters. Bxperiment: Vy, = —1.3...-1.36 V, semuclassics:
sqg=1.88...1.92.

less agreement with the experimental data. This is again due to the shift of the quantum

G, to larger magnetic fields, which was already observed in Sec. 7.3.2.

The good agreement of the semiclassical prediction of the maximum spacings with the

experimental findings is surprising, since the contributions of the individual orbits show a
different behavior. This is illustrated in Fig. 7.14. All individual orbits (thin lines) show a

strong decrease of AB with stronger
fields. This does not agree with the
experimental findings for the spacing
(heavy lines and symbols). This ob-
servation was one of the arguments
of Ref. [48], leading to the conclu-
sion that the magnetoconductance of
the channel is not accessible to semi-
The solu-

tion to this apparent contradiction is

classical approximations.

that in the present system not a few
orbits dominate the quantum oscilla-
tions, but many of them contribute
with comparable amplitudes, actions

-
O

AB[mT]

~

6
0.18

0.20

Figure 7.14:  Thick lines and symbols: Ezperimental
mazima spacings as iwn Fig. 7.18(a). Thin lines: Maz-
ima spacings from the contributions of some individual
orbits for Sq = 2.06.

"' The maxima positions were determined from the experimental §B. A cubic spline fit was used to

interpolate between the measured points. The latter were taken each 0.5 mT.
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and periods. Varying the magnetic field, the individual orbits change their AB. Simultane-
ously, the orbit stabilities (and thus the relative amplitudes) are affected. In combination,
the two effects lead to the weak variation of AB plotted in Fig. 7.13.

The semiclassical analysis is, as depicted in Fig. 7.13, also able to reproduce the amount
of short-range variation of the maximum spacings. This shows that the effect is not
due to experimental noise, but reflects the physical properties of the system. The basic
mechanism can easily be understood within the semiclassical picture. As pointed out
above, the influence of the individual orbits varies strongly with both magnetic field and
antidot diameter. Small changes in these parameters therefore can lead to significant
shifts of the maxima positions. The more the orbits differ geometrically, the larger are the
changes in § B induced by tiny changes of the parameters. For larger antidot diameter, i. e.
narrow constrictions, the classical orbits get more and more similar to each other. This
nicely explains the increased short-range variations of § B for smaller antidots.

Both the sinusoidal form of the experimental 6G,, and the Fourier analysis were consis-
tent with the picture that just a few orbits contribute significantly to the trace sum. The
analysis of the maxima spacings, however, shows that the idea to trace down the mag-
netoconductance features to the properties of one or two single orbits must be rejected.
The observed behavior depends on the subtle interplay between changes in the classical
stabilities and in the actions of a large number of similar orbits.

7.5.4 Variation of the antidot diameter

The second question formulated in Sec. 7.3.1 concerns the dislocations which occur in the
positions of the conductance maxima when varying the antidot diameter. Fig. 7.15(a)
shows the predictions of the semiclassical approach. The points represent the calculated
maxima positions, the thin lines are just a guide for the eye. The semiclassical description
clearly reproduces the dislocations (small boxes). This shows that the dislocations are no
genuine quantum effect, but accessible by semiclassic methods.

B[TIT (a) / Figure 7.15: (a) Result of the
0.26 | : / semiclassical analysis for the posi-
%/ tions of the conductance mazima

with varying magnetic field B and
antidot diameter sq (dots). Thin
lines connecting the points are just

0.24 ¢

0227 to guide the eye. The correspond-

ing experimental data is shown in

0.2 Fig. 7.2. The gray-shaded lines cor-

respond to loci of orbit bifurcations
(see Sec. 7.6, p. 86). (b) Local be-
havior around a dislocation. Lines:

0181 .

semiclassical result of the dashed

L boz in (a), points: experimental
‘ ‘ ‘ ‘ data around the dislocation marked
22 2.1 2.0 1.9 Sq— with the dashed box in Fig. 7.2.

Fig. 7.15(b) illustrates the local behavior around a dislocation. The lines correspond to
the semiclassical result (dashed box in Fig. 7.2(a)), the points give the experimental data
of Fig. 7.2(d). The values of B and s; have been shifted slightly, but no rescaling was
used. The excellent agreement shows that the local behavior at a bifurcation is not only
qualitatively, but even quantitatively explained within the the semiclassical description.
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7.6 Semiclassical interpretation

The last section confirmed that the semiclassical approach is able to explain all observed
magnetoconductance features of the channel with central antidots. The semiclassical tech-
nique has two main advantages compared to quantum calculations. The first benefit, the
reduced numerical effort, has already been exploited above. It was therefore possible to
calculate the data on a fine grid, and even to adapt the system parameters. Such a task
is in principle not impossible in a quantum approach, but frequently the numerical effort
is prohibitive.

The second advantage of semiclassical descriptions is that they express quantum oscilla-
tions in terms of classical quantities. Since human intuition is strongly based on classical
physics, the insight gained in the nature of these interference effects is enlarged by a
semiclassical description. The resulting intuitive picture might also be helpful for the
development of new devices, serving as a guiding line how to design a sample to achieve
certain desired properties. This section exploits the close relation of the trace formula
to the classical dynamics of the system to give an intuitive picture of the origin of the
maxima dislocations.

The different periodic orbits of the system have different degrees of similarity. A reasonable
way of splitting them in groups is to consider always those orbits together which are closely
related, i.e., have bifurcations with each other in the parameter range observed. These
orbit groups will be called families'?. Fig. 7.6 shows the traces of the orbits belonging to
such a family, illustrating their close internal relation.

To understand the nature of the effect leading to the dislocations, a model system with
only the orbits of this family will be considered for the moment. In Fig. 7.16(c) the squares
give the positions of the conductance maxima for this model system. This reduced system
already shows all the characteristic features observed in the experiment (see Fig. 7.2).
It especially exhibits the dislocations of the conductance maxima (boxes) which are so
far reproduced, but unexplained. As illustrated in Fig. 7.6, the members of the family
can be divided into three generations, depending on whether an orbit is offspring of the
orbit 1, 2 or 3. These are, for obvious reasons, called grandparents, parents, and children
generation. All members within a generation behave nearly identical, thus justifying the
classification. In Fig. 7.16(a) and (b) the maxima of the contributions of the grandparent
and the children generation to the conductance is shown. All generations'® induce nearly
equidistant maxima in B with a constant shift to larger B if the antidot diameter is
reduced. This in complete agreement with the simple Aharonov-Bohm picture discussed
in Sec. 7.3.1. The behavior of the individual generations is therefore readily interpreted in
terms of their geometrical properties. This implies, that the contributions of the individual
generation do not show dislocations. These must be due to the interplay of the different
generations.

The children have a larger semiclassical amplitude than the grandparents. Therefore the
maxima of the total G, (i.e. including all generations) follow the childrens’ maxima
where the latter exist. Otherwise, the maximum positions of the complete family agree
with those of the grandparents. This is confirmed by Fig. 7.16(d). The parents’ influence

12 These families are not to be confused with the families of degenerate orbits occurring in systems with
continuous syminetries.

3 This holds also for the parents generation. It is is not shown separately, since its contribution is
negligible throughout.
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Figure 7.16: The positions of the conductance mazima due to different orbit

generations of the family shown in Fig. 7.6: (a) grandparents, (b) children, (c¢) all
generations. The parents’ contribution 1s not shown separately, since it is negligible.
(d) Blow-up from (a)-(c). The mazima of the total §Gy (squares) follow the mazima
of the children (crosses) where these exist, and those of the grandparents (triangles)
otherwise. Heavy lines indicate the loci of bifurcations in the (sq, B) plane.

was found to be negligible throughout. The geometric differences between grandparents
and children orbits lead to different dependencies on the antidot diameter and the mag-
netic field strengths. Therefore the generations show different maxima spacings as well as
different slopes of the maxima with varying s4. Neither the slopes nor the spacings match
along the generation boundaries. This is similar to growing two materials with different
lattice constants onto each other. The resulting lattice defects are the equivalent of the
dislocations observed.

From this interpretation, further predictions can be deduced: (i) Scaling the system does
not affect the classical dynamics, so that the dislocations move along the (universal) bi-
furcation lines. (i7) Assuming a linear dependence of the action difference AS between
children and grandparents on sg4, the dislocations are equally spaced in s4. (4i7) Scal-
ing S with a factor x,'* the distances between dislocations scale according to Asg o k.
These predictions are checked in Fig. 7.17, where the maxima positions of the system of
Fig. 7.16(d), scaled with a factor of 2 (a) and 3 (b), are shown. The dislocations move
indeed on the bifurcation line. They occur approximately at the predicted values of sg,
which are marked by pins.

In the full calculation with over 60 orbits, the various families with their bifurcation
structures (gray lines in Fig. 7.15(c)) are superimposed. Only those dislocations survive
for which the above model scenario is locally dominating and no further orbits interfere.
As a result, some of the dislocations disappear, some are slightly shifted in the (sq4, B)

"This corresponds to scaling the size with s and the magnetic field with x~*.



7.7 SUMMARY 87

, . . .

1 [@ 0.30
H

m 0.26
. I
0.22 0.22 ¢
0.18} 0.18
0.14} 0.14

Figure 7.17:  The system of Fig. 7.16(d), scaled by a factor of k =2 (a) and k = 3
(b). The thin lines are guide to the eye. The magnetic field is scaled with k to stmplify
the comparison with Fig. 7.16. The bifurcation lines (and thus the region where the
children exits) are indicated by thick lines. Dislocations are marked with bozes. The
pins correspond to the prediction of the location of the dislocations given in the main
text.

plane. Therefore, no unique one-to-one relation between dislocations and bifurcations can
be established. Nevertheless, the qualitative pattern remains the same.

This interpretation suggests that there are
two orbit groups with different behaviors

present, their interplay being responsible for
the dislocations of the maxima positions ob-
served. This is in complete agreement with
the Fourier analysis of the experimental data
shown in Fig. 7.10, which shows two dis-
tinct peaks. The Fourier transform of the
semiclassical data for the individual orbits

Fourier component [arb.u.]—

generations is given in Fig. 7.18. For large

antidot diameter the parents (dashed) have

4 5 6 7 AB[mT]— 10
Figure 7.18:  The Fourier transform of the
contributions of the indwidual orbit famalies.
Solid: children, dashed: parents.

dominant Fourier components, as they ex-
ist in a much larger region in B compared
to the children (solid). For smaller antidots,
the region where children orbits exist rapidly
grows, and due to their large semiclassical amplitude they soon dominate the Fourier spec-
trum. In the intermediate regime, two separate peaks can be observed. This is the same
behavior found in the Fourier analysis of the experimental data in Fig. 7.10, where a
peak at 6B ~ 7mT vanished for smaller antidots, and a new peak occurred. The Fourier
analysis of the experimental data therefore supports the interpretation that the observed
structure in the maxima positions of the conductance is due to the interplay between two
orbit generations.

7.7 Summary

In summary, the semiclassical description successtully reproduces all experimentally ob-
served features of the magnetoconductance of a mesoscopic channel with antidots. It was
additionally demonstrated that the low numerical demands of the semiclassical approxi-
mation make a fit of the experimental potential possible.
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The variations in the maxima spacings could by reproduced in every respect. The semi-
classical approach yields the correct value for AB, together with the average behavior
with varying field and antidot diameter. Furthermore, the predictions of the amount of
short-range variation of AB in dependence of B and s4 agree with the experimental find-
ings. The semiclassical picture confirms that these variations are not due to experimental
inaccuracies, but reflect system properties.

The dislocations of the conductance maxima as functions of magnetic field B and antidot
diameter s; have been shown to be related to bifurcations of the leading classical periodic
orbits of the system. The dislocations are due to the fact that the bifurcations define
the border lines between regimes of different predominant orbit generations, leading to
different dependences of the conductance maxima on B and s4. This induces the observed
dislocations of the maximum positions, analogously to lattice defects at interfaces. As the
classical dynamics are not affected by a rescaling of the system, the scaling behavior of
the dislocations can be easily understood in the semiclassical approach.

These results disprove previous arguments claiming the channel system exhibits inherent
quantum features. These arguments were based on the discussion of the semiclassical
contributions of individual orbits. The semiclassical picture proposed here, in contrast,
claims that the subtle interplay between many different orbits, i.e. the variations in all
their stabilities and actions under the change of the system parameters, is responsible for
the observed magnetoconductance features.

The way how bifurcations affect the quantum oscillations in the channel system is different
from previously reported mechanisms. Using a numerical version of uniform approxima-
tions, the bifurcations of the system were shown to have no locally enhanced influence on
the conductance. In super-deformed nuclei [10] or elliptic billiards [57], in contrast, period
doubling orbit bifurcations influence the quantum shell structure due to their dominant
order in 1/h. The influence of the bifurcations in the present system is also different from
the one reported for the resonant tunneling diode [114]. There, the bifurcations lead to a
doubling of the period, whereas in the system considered here the periods of all relevant
orbits are approximately constant. Furthermore, in the resonant tunneling diode only a
few orbits were found to be important, whereas the present system is dominated by a
much larger number of orbits with nearly identical actions, periods and amplitudes.



