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70 Chapter 7: The hannel with antidotsMany physial observations in mesosopi ballisti devies ould suessfully be explainedby the interferene of lassial orbits in the system. Among these are the Shubnikov-de-Haas osillations and the QHE of the free 2DEG disussed in the previous hapter,the magnetoondutane osillations of a 2DEG in an antidot superlattie [84, 55℄ andthose of a large irular quantum dot [62℄. Also the urrent osillations in a resonanttunneling diode (RTD) [114℄ ould be desribed in these terms. There is, however, anongoing disussion whih e�ets an be treated using semilassial methods, and whihare of genuine quantum origin (i. e. of higher than leading order in �h).The experimental observations of a mesosopi hannel with a entral antidot moleule (adimer) have been reprodued by a quantum alulation [48℄. The authors related the mea-sured magnetoondutane features to inherent quantum e�ets. They therefore laimedthat the features are not aessible by semilassial approximations. This motivates amore detailed examination whether the observations of this system are really beyond thelimit of a semilassial desription.A seond reason for working out a semilassial approximation of this struture is thatit has a mixed phase spae. The bifurations whih our in those systems lead to di-vergenies in a leading-order �h approximation. Muh interest has been foused on theimplementation of bifurations in semilassial approximations (see for example Ref. [71℄and the referenes ited therein) and to trak down their inuene on experimental quan-tum osillations. In the RTD, for example, period-doubling bifurations were found tobe responsible for a period doubling in the osillations of the observed I-V urves [114℄.The examination of the hannel system will, as it exhibits bifurations, ontribute to thisdisussion.Finally, the quantum alulations for the hannel were able to reprodue its main features.They are, however, numerially so demanding that the dependene on the external vari-ables ould only be varied on a relatively oarse grid. For semilassial alulations theserestritions will be onsiderably less tight. Within suh a desription, even a �t of thee�etive potential of the system ould be feasible.These three points make the hannel system a real hallenge to semilassis.7.1 The devieThe devie onsists of eletrostati gates on�ning a high-mobility 2DEG in a GaAs/GaAlAsheterostruture. The 2DEG was 82nm beneath the surfae, its eletron density wasne � 3:47 � 1015m�2, and the mobility about 100m2V �1s�1. The SEM piture of theFigure 7.1: SEM photograph ofthe gate struture. All gates wereontated separately in a laterstep. For the experiments dis-ussed in this work, all hannelgates are onneted to the om-mon gate voltage Vg, and the twoantidots are biased with Vd. 1µm
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0.2µmgate struture is shown in Fig. 7.1. Four metallized gates are used to de�ne a long, narrowhannel (5�m �1�m). Two irular gates with a diameter of 0:2�m at a distane of 0:2�m



7.2 Experimental results 71from eah other and from the hannel gates de�ne the antidot dimer. All gates are indivi-dually ontated using a bridge tehnique. Details about the devie and its fabriation arepresented in [33, 48, 34℄ and the referenes ited therein. All measurements were taken atT � 100mK using standard low-exitation AC-tehniques. The magneti �eld was appliedperpendiular to the 2DEG.7.2 Experimental resultsThis extremely versatile devie was used for a variety of di�erent experiments. The on-dutane was examined for the hannel (using all four hannel gates) and the half hannel(using only the left hannel gates). The antidot gate voltages were varied from the openhannel to omplete pinh-o�, and the magneti �eld range examined strethes from zero�eld to the high-�eld regime, where the quantum mehanial edge hannel piture getsaurate. Applying gate voltages that pinh o� all but one onstrition establishes a quan-tum point ontat (QPC) in the system. A lot of work was dediated to the measurementof the quantized ondutane e�ets of these QPCs. The orresponding experimentalplateaus were also used to approximately sale the antidot voltages to an e�etive deple-tion width of both the antidots and the hannel walls. Details on these experiments anbe found in Refs. [34, 33, 35, 48, 47, 67℄.For the experiments onsidered in this work, an idential voltage Vg, whih was held �xed,was applied to all hannel gates. Both antidot gates were given the same bias voltageVd, whih was the seond parameter besides the magneti �eld. The parameter range ofinterest for this thesis orresponds to large antidots whih overlap, so that the entralonstrition is pinhed o�. The magneti �eld is varied in the regime where the ylotrondiameter of the lassial eletron motion is omparable with the hannel width. In thefollowing, a short summary of the experimental �ndings relevant for this work will begiven.Fig. 7.2(a) shows a typial magnetoondutane trae measured for large antidots. Thelongitudinal ondutane Gxx is near 4 ondutane units e2=h for most �eld strengths,dropping to approximately half the value in a sharp peak. The peak position orresponds tothe ommensurability of the size of the antidot dimer and the lassial ylotron diameter(marked with arrows)1 . Note that this is ompletely analogous to the ommensurabilitypeaks observed in antidot latties [84, 55℄. Fig. 7.2(b) gives a loseup of the peak (boxedregion in (a)). Superimposed on the peak, quantum osillations with an approximatelyonstant period an be observed. This is studied in more detail in (), where the spaings ofthe neighboring ondutane maxima are plotted as a funtion of B. The di�erent urvesorrespond to slightly di�erent antidot voltages. The average spaing of the maxima isnearly onstant, only slightly dereasing with stronger �elds. Superimposed on this smoothtrend random like variations are observed.The unique design of the sample with individually ontated gates allows to hange thevoltages of the antidots without a�eting the other system properties. This was exploitedto measure the inuene of the antidot diameter, whih is diretly related to the appliedvoltage via the indued depletion width. Fig. 7.2(d) shows the inuene of this parameter.The points in the diagram orrespond to the positions of the maximum of Gxx, the solid1The antidot size is determined by the lowest point of the saddle of the model potential (de�ned belowin Eq. (7.1), with sd = 2 and sg = 1).
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*Figure 7.2: Experimental results. (a,b) Magnetoondutane trae for Vg = �1:44V.The vertial arrows indiate the ommensurability ondition (see main text). ()Spaing of the ondutane maxima for three gate voltages Vg = �1:42 : : :�1:5 V. (d)Dots orrespond the positions of the ondutane maxima in dependene of B and Vg.Solid lines are to guide the eye. Dashed lines are alulated from the simple pituredesribed in Se. 7.3.1.lines are just to guide the eye. For smaller antidot voltage the maxima move to stronger�elds. They shift mostly parallel, interrupted by harateristi disloations (boxes).7.3 Theoretial desription7.3.1 Intuitive disussionSome of the observed e�ets an immediately be understood on an intuitive level. A simplepiture will larify whih of the features need more detailed disussion.Sine the entral onstrition is pinhed o� in the observed regime of antidot voltages,two QPCs are formed between the hannel wall and the antidots. The �rst plateau ofquantized ondution leads to a ondutane of e2=h per onstrition and per spin, sothat the value of 4e2=h is expeted if no interferene takes plae between the QPCs. If theylotron diameter equals the hannel width, the eletrons passing the lower onstritionan be foused bak through the upper onstrition, so that the ondutane falls to2e2=h. Using the simple model potential de�ned below in Eq. (7.1), one an estimate theentral peak position by assuming that the orbits are ylotron-like, passing the saddleof the potential at the lowest point. A rough estimate of the peak width is given bythe magneti �eld strengths where ylotron orbits pass the onstrition at Fermi energy.These estimates are ompared to the experimental Gxx in Fig. 7.2(a). The magnitude ofthe ondutane, the position of the ondutane dip (vertial arrow), and also its width(horizontal arrow) are in quantitative agreement with this simple onsideration.The osillations superimposed on the peak may be explained in analogy to the Aharonov-Bohm (AB) e�et. Identifying ylotron orbits around the two entral antidots withthe AB ring, equidistant maxima in B are expeted. Subsequent maxima orrespond in



7.3 Theoretial desription 73this piture to an additional ux quantum through the ring, so that their spaing onlydepends on the ring area. The experimentally observed �B � 7mT (f. Fig. 7.2())orresponds to a diameter of the AB ring of � 0:86�m. This is onsistent with the deviedimensions extrated from the SEM photograph Fig. 7.1. Following this interpretationfurther, the ondutane maxima are expeted to shift to larger B �elds if the antidotdiameter is dereased. Taking the approximate saling between Vg and depletion with sdfrom Kirzenow et al. [48℄ allows a quantitative alulation of the expeted e�et.2 Thepredition of this simple model is shown in Fig. 7.2(d) with dashed lines. Considering therude approximations made, the agreement with the experiment is remarkable.3The questions whih remain to be answered by a more detailed analysis onern thedeviations from this simple behavior: (1) How does the spaing of the maxima hangewith B? (2) Whih mehanism is responsible for the disloations of the maxima positions?7.3.2 Quantum mehanial alulationKirzenow et al. [48℄ presented a quantum mehanial alulation using a transfer matrixtehnique on a lattie. The model potential both for the hannel and the antidot gateswas hosen4 asV (r) = � EF [r=a0 � (1 + s)℄2 for r < a0(1 + s)0 otherwise ; (7.1)with a0 = 0:05�m. Here r denotes the distane to the gate, and a0 the length sale overwhih the potential falls of from EF to 0, i. e. the di�useness of the potential. s is adimensionless parameter modeling the depletion width around the gates. For the gatesde�ning the hannel, s = s = 1 was used unless otherwise notied. The ondutane wasobtained from the Landauer formula g = (e2=h)Tr(tty). The alulations were performedfor T = 0 and negleting impurity sattering. Therefore the quantum mehanial approahmisses a smoothing of the data due to temperature and impurity e�ets.The results relevant for the further disussion are reprodued in Fig. 7.3. (a) shows themagnetoondutane trae, (b) the variation of the maxima spaings, and () the posi-tions of the maxima with varying antidot diameter. The quantum mehanial alulation(heavy lines) qualitatively reprodues both the saturation of the peak spaings and themaxima disloations observed experimentally. Charateristi deviations are the shift ofthe ondutane peak to higher B-�elds, and orrespondingly a shift of the �B versus B2To establish a relation between the antidot diameter and the ylotron radius, the ylotron orbit isassumed to pass the onstrition at a onstant potential 0:6EF . This parameter is adapted so that �Bmathes the experiment. Note that �B an only be slightly modi�ed by varying this parameter. Theslopes with hanging sd are hardly a�eted at all.3Note that Gould et al. [34℄ explained the shift of the ondutane maxima by the redued veloity of apartile in the onstrition, whih also leads to a hange of the ation of an orbit. The simple AB piture,however, explains already both the spaing of the maxima and their dependene on the antidot diameter.Therefore in this ontext no additional mehanism has to be introdued.4The eletrostati potential indued by the gates is relatively smooth. The e�etive single-partilepotential, however, gets steeper with inreasing partile number. This has been shown in self-onsistentalulations for quantum dots [24℄ and is analogous to the situation in three-dimensional metal lusters [32,89℄. In the limit of high eletron densities, the e�etive potential is box-like. This ensures that the appliedgate voltage only determines the depletion region of the gate, whereas the potential steepness dependsmainly on the eletron density. For the eletron densities realized in the experiment, the hoie of themodel potential onsisting of a at entral region with steep walls is justi�ed.
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*Figure 7.3: Quantum results. (a) Magnetoondutane. Thik: QM for sd = 2:05,thin: experiment with Vg = �1:44 V. The arrow indiates the ommensurabilityondition in the model potential. (b) Spaing of the maxima for sd = 2:05. The thinlines orrespond to the experimental urves of Fig. 7.2. () Positions of the maximain dependene of B and sd. Small boxes indiate disloations, the large box gives theapproximate range of the orresponding experimental data of Fig. 7.2.urve. The lak of quantitative agreement ould be due to the model potential, whoseparameters were not adapted for a perfet �t. Note, however, that the entral positionof the peak does not oinide with the ommensurability ondition of the model potential(vertial arrow). The origin of this deviation is unlear.7.4 Semilassial desription of the ondutaneThe initial motivation for a semilassial analysis of this system was to �nd out whetherthe variation of the maxima spaings and the disloations with varying antidot diameterare genuine quantum e�ets, i. e., of higher than leading order in �h. This was laimed inRefs. [48, 34℄ with two arguments: (1) All lassial orbits found by the authors show adependene of the ation S on the magneti �eld B whih implies a derease of �B withlarger B. This ontradits the experimental results. (2) The experiment is performed inthe regime of the �rst plateau of quantized ondution. With just one mode transmitting,a semilassial approah seems questionable to the authors.In this hapter, the semilassial desription of the magnetoondutane for the hannelsystem is derived. The results are ompared to the quantum mehanial data as wellas to the experimental �ndings. It is disussed why the semilassial desription is { inontrast to the above arguments { able to explain all the experimentally observed features.Thereafter, the lower omputational e�ort of the semilassial ansatz is used to �t themodel potential parameters to the experiment. The lose relation of the trae formula tothe lassial dynamis of the system �nally allows to explain all e�ets within a simple,intuitive piture.



7.4 Semilassial desription of the ondutane 757.4.1 Landauer-B�uttiker or Kubo?Although the quantum mehanial results of the Landauer-B�uttiker and the Kubo for-malism have shown to be idential [12℄, the appropriate formulation for a semilassialapproximation has to be hosen.The Landauer-B�uttiker approah [54, 21℄ is valid for ompletely phase-oherent deviesonneted to leads whih serve as eletron reservoirs. The ondutane of suh a system anbe expressed in terms of the transmission oeÆients between all the ontat modes. Thisformalism holds for two-terminal measurements as well as for on�gurations inluding moreontats. The hannel with entral antidots onsists of a phase-oherent \ative region"(the environment of the antidots), onneted by \leads" (the hannel itself). Sine theseleads are not phase oherent (their lengths exeed the phase oherene length), they annotbe onsidered as part of the devie. They are not in thermal equilibrium,5 so that theyare no ontats in the sense of the Landauer-B�uttiker formalism, either. This approah istherefore not appliable to the present system.The Kubo approah desribes the ondutivities of homogeneous, marosopi samples.Sine the hannel is neither homogeneous nor marosopi, it is not reasonable to de�nea ondutivity for this system. Nevertheless, the Kubo formalism is appliable. This be-omes lear onsidering a hypotheti system, namely a 2D lattie with the hannel systemas its elementary ell. This setup is equivalent to the antidot latties regularly treatedwithin Kubo formalism. The ondutivities whih are alulated from the Kubo formularefer to the marosopi dimensions of the (hypothetial) lattie. Sine the vertially se-parated elementary ells an not interfere beause of the hannel walls, and horizontallyseparated antidot dimers are further apart as `�, the lassial saling laws hold down toa single elementary ell of the lattie, i. e. an be applied to the individual hannel witha pair of antidots. The ondutane of the individual hannel is therefore given by theondutivity in onnetion with the size of the elementary ell. Sine the resistane of thehannel itself is negligible, the relevant size is given by the ative region, i. e. the regionaround the antidots.In the following, the semilassial version of the Kubo transport formula Eq. (5.4) will beapplied to the hannel with antidots.7.4.2 The model potentialTo allow a omparison of the results, the quantum mehanial model potential is also usedfor the semilassial approah. Numerial stability, however, requires6 smooth seondderivatives of V (r). The model potential Eq. (7.1) has a disontinuous seond deriva-tive between the at bottom and the quadrati wall. To remove this, a ubi spline isintrodued in the transition region. The total potential is given byV (~r)EF = 8>><>>:(j~rj � s1)2 + �212 j~rj< (s1 ��=2)� 13�(j~rj � s2)3 (s1 ��=2) <j~rj< (s1 +�=2)0 (s1 +�=2) <j~rj (7.2)5This is espeially lear for high magneti �elds where the urrent is arried by edge states. The statesat the opposite edges of the hannel have di�erent Fermi energies in this regime.6This is due to the numerial sheme implemented, whih simultaneously integrates the stability matrix.It will be presented in appendix A.



76 Chapter 7: The hannel with antidotswith ~r = r=a0, s1 = 1 + s and � = s2 � s. Throughout this hapter, � = 0:005 is used.This results in a di�erene to the pure paraboli ase smaller than 2:1 � 10�6EF , whihis negligible. The potential Eq. (7.2) is illustrated in Fig. 7.4. Unless otherwise notied,
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Figure 7.4: Left: Modelpotential used for thesemilassial alula-tions. Right: Closeupof the transition region.Cubi spline orretion(solid) and the pieewiseparaboli ase (dashed).the parameters are idential to those of the quantum alulation, i. e. a0 = 0:05�m ands = s = 1 for the gates de�ning the hannel. The depletion width of the antidot gates sdwas varied between 1.5 and 2.2. Following the approximated relation between sd and Vg inRef. [48℄, this orresponds to an e�etive antidot diameter between 0:35�m and 0:42�m.7.4.3 The periodi orbitsExept for a few speial ases, the periodi orbits of a system with smooth potential anonly be found numerially. This stage involves the main numerial e�ort of a semilassialapproximation, so that some are reduing the omputation time is indiated. In ordernot to interrupt the disussion, the orresponding tehnial (though important) detailsare given in appendix A. The entral idea is to implement a fast numerial di�erentialequation solver to integrate simultaneously the lassial equations of motion (EOM) anda redued version of the monodromy matrix, the (2D) stability matrix fM . Starting withrandom initial onditions, a two-dimensional Newton-Raphson iteration using the infor-mation provided by fM onverges to the periodi orbits. These are followed with varyingB-�eld and antidot diameter using an adaptive extrapolation sheme.
Figure 7.5: Six typial lassial periodi orbits in thehannel system. Note that there are orbits breaking thesymmetries of the potential.

Although the potential is simple andsymmetri, it gives rise to a large va-riety of distint periodi orbits, manyof them breaking the symmetry ofthe system. Some typial examplesare shown in Fig. 7.5. Aording toSe. 3.2, �nite temperature and impu-rity sattering leads to a strong damp-ing of the ontributions of longer pe-riodi orbits to the trae sum. Sys-tems like the disk billiard (see hap-ter 4) or antidot latties [63, 41℄ onlyhave a small number of short periodiorbits. In these ases the evaluation ofthe semilassial Kubo formula is espe-ially easy, sine only a few ontributions are signi�ant. In the hannel, unfortunately,the lengths of the orbits are nearly idential, so that muh more orbits ontribute to thetrae sum.Most of the orbits do not exist over the whole parameter range, appearing and disappearing



7.4 Semilassial desription of the ondutane 77in orbit bifurations. Fig. 7.6 shows the typial behavior of Tr(fM ) of some orbits withvarying magneti �eld. The struture of the lassial dynamis is astonishingly rih,showing bifurations (whih orrespond to Tr(fM ) = 2) of various types and { when varyingthe antidot diameter sd { also of higher odimension. The number of orbits inreasesrapidly with smaller antidot diameter (i. e., wider onstrition).
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The Poinar�e plot of the han-nel is given in Fig. 7.7. Theleftmost piture shows the sta-bility island of a primitive or-bit, surrounded by hains ofstable and unstable orbits ofhigher repetition number, inthe \sea of haos". Varyingthe magneti �eld drives thesystem through a bifuration.The entral stable orbit be-omes unstable, reating a pairof new stable orbits (rightmostpiture). This is the typialphase spae piture of a perioddoubling (or pithfork) bifur-ation.By heking Tr(fM ) as inFig. 7.6, it was ensured thatno orbit was missed at a bi-furation. All together, over60 orbits (not ounting thesymmetry-related ones) havebeen inluded in the alula-tions. All relevant lassialproperties, namely the ations, periods, stabilities, veloity-veloity orrelation funtions,Maslov indies and degeneraies were determined numerially. The tehnial details arepresented in appendix A.2.
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78 Chapter 7: The hannel with antidots7.4.4 Evaluating the trae formulaAs disussed in Se. 2.4, leading-order �h approximations diverge at bifurations. Thisspurious behavior an be removed by a loal higher-order expansion. To ensure both theorret loal properties at the bifuration and the (Gutzwiller-) limit far from it, uniformapproximations an be used.Orbit traes like in Fig. 7.6 allow the identi�ation of the types of bifurations present inthe hannel system. Varying the magneti �eld both tangent and period doubling bifura-tions our. If additionally the antidot diameter is hanged, bifurations of odimension2 show up as well. The expliit formulas for the uniform approximation of tangent bifur-ations are given in appendix B by Eqs. (B.7) and (B.8). Eq. (B.15) applies to pithforkbifurations. The next setion deals with the impliations that these expressions do notonly ontain information about the lassial periodi orbits, but also inlude the ontri-bution of ghost orbits, i. e., analyti ontinuations of orbits beyond the regime where theylassially exist.7.4.4.1 Numerial implementation of the uniform approximationThe formulas for the uniform bifuration annot be applied diretly to the system on-sidered here. First, the hannel has disrete symmetries, whereas these formulas applyto the generi, symmetry-free ase. The disrete symmetry modi�es the behavior of theperiod doubling bifuration. Its generi form onsists of a entral orbit whih hangesits stability (from stable to unstable or vie versa), splitting o� a new orbit with twiethe period. In the hannel system, in ontrast, two symmetry-related orbits with thesimple period split o� (f. Fig. 7.7 for a Poinar�e plot). The total Gutzwiller amplitudes,however, are idential for the symmetri and the generi situation. The fator 2 from thedouble period in the generi ase is replaed by the degeneray fator 2 stemming from thesymmetry. Inluding the degeneraies orretly, the uniform approximation of Shomerusand Sieber an be applied to the hannel system.The seond problem onerns the numerial implementation of the uniform approximation.The information about the ghost orbits whih ontribute to the analytial formulation isnot available if the lassial equations of motion are integrated numerially. This preventsthe appliation of the uniform approximation to the omplex side of the bifuration. Thiswork suggest a modi�ed sheme, whih retains the orret limiting ases, but requiresonly information about real orbits. It onsists of a loal approximation at the bifuration,whih is adapted to both the loal form of the uniform approximation and the limit onthe far omplex side (whih is simply the Gutzwiller ontribution of the remaining realorbits). The tehnial details of the proedure are presented in Appendix B.7.4.4.2 The inuene of the bifurationsAs an be dedued from the analytial loal form, the ontributions of the orbits engagedin a bifuration are inreased by a fator �h�Æ. The exponent depends on the type of thebifuration; for the tangent bifuration Æ = 1=6, and for the period doubling bifurationÆ = 1=4 [70℄. This shows that bifurations are of leading order in �h and dominate inthe semilassial limit �h=S ! 0 (with S being the ation of a typial periodi orbit inthe system). Therefore it has to be heked whether the bifurations have an inreasedinuene on the ondutane of the hannel system.



7.4 Semilassial desription of the ondutane 79Fig. 7.8(a) shows the trae of the (redued) stability matrix Tr( eM) of three periodi orbitstaking part in two suessive bifurations (where Tr( eM) = 2) under variation of the mag-neti �eld strength B. At eB � 0:21 a tangent bifuration, and at eB � 0:225 a pithfork
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Figure 7.9: ÆGxx for sd = 1:88 using the semilassial Kubo formula either diretly(thin) or with additional folding over B (dashed). The uniform approximation orre-sponds to the heavy solid line. Maxima are marked with diamonds (folded Kubo) andtriangles (uniform).lead to additional terms in the trae sum, but also require an adaption of the smoothingsheme. This applies, as pointed out there, also to bifurations. The orret inlusion of�nite temperature and impurity sattering is possible using the folding approah presentedin Se. 3.3.2. This proedure implements the smoothing in higher order in �h, but it does notinlude higher-order �h terms to the trae formula. Comparing the uniform approximationwith the results of the semilassial Kubo formula in ombination with the folding approahtherefore permits an examination of the e�ets of the higher-order �h terms introdued bythe bifurations.The dashed line in Fig. 7.9 shows the result of the folding approah. It removes thespurious divergenies at the bifurations, and the remaining disrepany to the uniformtreatment is small. This is in strong ontrast to Fig. 7.8, where only a few orbits areinluded. The semilassial result therefore depends only little on the orret treatment ofthe bifurations if many orbits are inluded. From this observation it an be dedued thatthe higher-order �h orretions from the di�erent bifurations interfere mostly destrutively.This e�et has already been observed in the study of the disk billiard in hapter 4.In partiular, the inuene of the bifurations on the maximum positions (marked bydiamonds and triangles in Fig. 7.9) is small. Therefore the semilassial desription anbe further simpli�ed by using the trae formula Eq. (5.4) with additional onvolution overB. This will be done in the following.7.5 Semilassial resultsThe disussion of the simple Aharonov-Bohm (AB) piture in Se. 7.3.1 has shown that theobservations whih still need to be explained are the dependene of the maximum spaingson B, and the disloations of the maxima positions with varying antidot diameter. Thiswill be disussed in Se. 7.5.3 and 7.5.4, respetively. Before that, a loser look at theexperimental results will be taken.7.5.1 Fourier omponents of the quantum osillationsThe semilassial trae formula Eq. 5.4 has the struture of a Fourier sum, with theperiodi orbits as individual Fourier omponents. If the semilassial approah is justi�ed



7.5 Semilassial results 81and a formula of this type desribes the quantum osillations, the traes of the lassialorbits should be visible in a Fourier transform of the experimental data. This tehniquehas evolved to a standard approah for extrating the inuene of the lassial phasespae struture on quantum osillations. Prominent alulations of this type inlude theRydberg spetrum of hydrogen [92℄ and of larger atoms [52℄. This powerful method shallnow be applied to the hannel system in order to hek whether the quantum osillationsshow indiations for the inuene of lassial orbits.
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For suh an analysis to be rigidly valid,a saling law for the ations of theperiodi orbits must hold. The ob-served ondutane osillations resem-ble Aharonov-Bohm osillations. Theation of the orresponding orbits, theylotron orbits, sales like S = �B.Taking the Fourier transform of Gxxwith respet to B, orbits with this sal-ing property show up as sharp peaks.Fig. 7.10 shows Fourier spetra8 of theexperimental data with respet to Bfor di�erent antidot voltages. For largeantidots (large negative voltage on theantidot gates) one dominant frequenyan be observed. With dereasing an-tidot diameter, the orresponding peakshrinks and �nally disappears. Simul-taneously, a new peak develops at smaller �B. For Vg � �1:24 V both peaks haveapproximately equal strength. With dereasing antidot diameter, both peaks move tolarger �B.The width of the peaks in Fig. 7.10 is not restrited by the �nite resolution of the Fouriertransform. This does not neessarily ontradit a semilassial interpretation. The broad-ening might be aused by orbits whose ation sales only approximately like S = �B. Thewidths of the peaks an also be explained by many orbits whih ontribute, eah with aslightly di�erent frequeny. The Fourier data therefore neither gives a lear indiation ofperiodi orbits ontributing to the quantum osillation, nor does it exlude this possibility.The osillations in Gxx seen in experiment (ompare to Fig. 7.2) are nearly sinusoidal, sothat one might expet that a single periodi orbit is responsible for the e�et. The aboveFourier analysis of the data shows, however, that at least two orbits ontribute to thequantum osillations.7.5.2 The ondutane variation with BFig. 7.11 ompares the semilassial result for the osillating part of the ondutane withthe experimental9 data.8To learly separate out the regime of interest around the ommensurability peak, a triangular windowfuntion was used. The magneti �eld range onsidered was B = 0 : : : 0:5 T.9To extrat the osillating part of the ondutane from the the experimental data, the smooth partwas alulated by onvolution with a Gaussian with � = 0:004 T. The di�erene to the original data givesÆGxx.
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Figure 7.11: Semilassial (solid) and experimentaldata (dashed) for ÆGxx. The arrows indiate the om-mensurability ondition; o�set for larity. (a) Largeantidot diameter. Semilassis: sd = 2:06, experiment:Vg = �1:48 V. (b) Intermediate antidot diameter.Semilassis: sd = 1:91, experiment: Vg = �1:38 V.
The semilassial result shows { apartfrom small shift towards higher mag-neti �elds { qualitatively the samebehavior as the experimental data.Although using an idential modelpotential, this shift is onsiderablysmaller than for the quantum alu-lation (ompare to Fig. 7.3). Theorigin of this disrepany betweenthe two theoretial desriptions is un-lear. Please note in this ontextthat the quantum alulation in on-trast to the semilassial approahdoes not reprodue the orret po-sition of the lassial ommensura-bility peak. This is lear ompar-ing Figs. 7.3 and 7.11, where theommensurability onditions are indi-ated by vertial arrows.The numerial e�ort involved in the semilassial alulation is onsiderably smaller thanfor the quantum approah. It is low enough to make a �t of the model potential to theexperimental �ndings feasible. For this task three parameters of the model system havebeen varied, namely the overall system size and the depletion widths of the hannel andantidot gates, s and sd. Sine the lassial dynamis are size-independent, the saling ofthe system with a fator � in oordinate spae an simply be performed by replaing inEq. (5.4) the ation S with �S and the magneti �eld B with ��1B. To hange s, theperiodi orbits have to be adapted to the new potential using the same sheme alreadyemployed when varying B or sd (see appendix A.3).Fig. (7.12) shows the semilassial ondutane for s = 1:5 and sd = 1:5 for a systemsaled with � = 1:075, i. e. s0 = 0:05375�m. This size is still in agreement with theSEM piture Fig. 7.1. The adapted model potential removes the mismath between thesemilassial and the experimental �ndings, resulting in a quantitative10 agreement of thesemilassial ÆGxx with the experimental data.
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Figure 7.12:Adapting the parame-ters of the model po-tential. Solid: experi-ment for Vg = �1:50V ,dashed: semilassis fors = 1:5, sd = 1:5, ands0 = 0:05375�m.The following alulations return to the parameters of the quantum approah in order tohave the two theoretial methods on the same basis.10Note that the amplitudes are, as usual in semilassial alulations, adapted.



7.5 Semilassial results 837.5.3 The maximum spaing
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Figure 7.13: The spaing of the maxima in dependeneof B. Thin lines, open symbols: experiment. Heavylines, �lled symbols: semilassis. (a) Large antidotdiameters. Experiment: Vg = �1:42 : : :�1:5 V, semi-lassis: sd = 2:05 : : : 2:07. (b) Medium antidot diame-ters. Experiment: Vg = �1:3 : : :�1:36 V, semilassis:sd = 1:88 : : : 1:92.

Fig. 7.13 ompares the variation ofthe maximum spaings of the semi-lassial desription (heavy lines and�lled symbols) to the experimentaldata11 (thin lines and open sym-bols). For large (a) as well as for in-termediate antidot diameter (b) theaverage spaing of the maxima isnearly onstant in B, only slightlydereasing for stronger �elds. This islearly reprodued by the semilassi-al approah. The mean spaing is {both experimentally and in the semi-lassial desription { una�eted byhanges of the antidot diameter. Themaxima spaings, however, do notvary smoothly, but show random-likevariations for small hanges in eitherB or sd. Large antidots (Fig. 7.13(a))give rise to a more regular pat-tern than smaller antidot diameters(Fig. 7.13(b)). The amount of vari-ation is orretly reprodued by thesemilassial desription. The quan-tum alulation in Fig. 7.3(b) showsless agreement with the experimental data. This is again due to the shift of the quantumGxx to larger magneti �elds, whih was already observed in Se. 7.3.2.The good agreement of the semilassial predition of the maximum spaings with theexperimental �ndings is surprising, sine the ontributions of the individual orbits show adi�erent behavior. This is illustrated in Fig. 7.14. All individual orbits (thin lines) show a
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strong derease of �B with stronger�elds. This does not agree with theexperimental �ndings for the spaing(heavy lines and symbols). This ob-servation was one of the argumentsof Ref. [48℄, leading to the onlu-sion that the magnetoondutane ofthe hannel is not aessible to semi-lassial approximations. The solu-tion to this apparent ontradition isthat in the present system not a feworbits dominate the quantum osilla-tions, but many of them ontributewith omparable amplitudes, ations11The maxima positions were determined from the experimental ÆB. A ubi spline �t was used tointerpolate between the measured points. The latter were taken eah 0:5 mT.



84 Chapter 7: The hannel with antidotsand periods. Varying the magneti �eld, the individual orbits hange their �B. Simultane-ously, the orbit stabilities (and thus the relative amplitudes) are a�eted. In ombination,the two e�ets lead to the weak variation of �B plotted in Fig. 7.13.The semilassial analysis is, as depited in Fig. 7.13, also able to reprodue the amountof short-range variation of the maximum spaings. This shows that the e�et is notdue to experimental noise, but reets the physial properties of the system. The basimehanism an easily be understood within the semilassial piture. As pointed outabove, the inuene of the individual orbits varies strongly with both magneti �eld andantidot diameter. Small hanges in these parameters therefore an lead to signi�antshifts of the maxima positions. The more the orbits di�er geometrially, the larger are thehanges in ÆB indued by tiny hanges of the parameters. For larger antidot diameter, i. e.narrow onstritions, the lassial orbits get more and more similar to eah other. Thisniely explains the inreased short-range variations of ÆB for smaller antidots.Both the sinusoidal form of the experimental ÆGxx and the Fourier analysis were onsis-tent with the piture that just a few orbits ontribute signi�antly to the trae sum. Theanalysis of the maxima spaings, however, shows that the idea to trae down the mag-netoondutane features to the properties of one or two single orbits must be rejeted.The observed behavior depends on the subtle interplay between hanges in the lassialstabilities and in the ations of a large number of similar orbits.7.5.4 Variation of the antidot diameterThe seond question formulated in Se. 7.3.1 onerns the disloations whih our in thepositions of the ondutane maxima when varying the antidot diameter. Fig. 7.15(a)shows the preditions of the semilassial approah. The points represent the alulatedmaxima positions, the thin lines are just a guide for the eye. The semilassial desriptionlearly reprodues the disloations (small boxes). This shows that the disloations are nogenuine quantum e�et, but aessible by semilassi methods.
(a)

0.16

0.2

0.24

1.92.02.12.2

B[T]↑

(b)

0.26

0.22

0.18

s  →d

Figure 7.15: (a) Result of thesemilassial analysis for the posi-tions of the ondutane maximawith varying magneti �eld B andantidot diameter sd (dots). Thinlines onneting the points are justto guide the eye. The orrespond-ing experimental data is shown inFig. 7.2. The gray-shaded lines or-respond to loi of orbit bifurations(see Se. 7.6, p. 86). (b) Loal be-havior around a disloation. Lines:semilassial result of the dashedbox in (a), points: experimentaldata around the disloation markedwith the dashed box in Fig. 7.2.Fig. 7.15(b) illustrates the loal behavior around a disloation. The lines orrespond tothe semilassial result (dashed box in Fig. 7.2(a)), the points give the experimental dataof Fig. 7.2(d). The values of B and sd have been shifted slightly, but no resaling wasused. The exellent agreement shows that the loal behavior at a bifuration is not onlyqualitatively, but even quantitatively explained within the the semilassial desription.



7.6 Semilassial interpretation 857.6 Semilassial interpretationThe last setion on�rmed that the semilassial approah is able to explain all observedmagnetoondutane features of the hannel with entral antidots. The semilassial teh-nique has two main advantages ompared to quantum alulations. The �rst bene�t, theredued numerial e�ort, has already been exploited above. It was therefore possible toalulate the data on a �ne grid, and even to adapt the system parameters. Suh a taskis in priniple not impossible in a quantum approah, but frequently the numerial e�ortis prohibitive.The seond advantage of semilassial desriptions is that they express quantum osilla-tions in terms of lassial quantities. Sine human intuition is strongly based on lassialphysis, the insight gained in the nature of these interferene e�ets is enlarged by asemilassial desription. The resulting intuitive piture might also be helpful for thedevelopment of new devies, serving as a guiding line how to design a sample to ahieveertain desired properties. This setion exploits the lose relation of the trae formulato the lassial dynamis of the system to give an intuitive piture of the origin of themaxima disloations.The di�erent periodi orbits of the system have di�erent degrees of similarity. A reasonableway of splitting them in groups is to onsider always those orbits together whih are loselyrelated, i. e., have bifurations with eah other in the parameter range observed. Theseorbit groups will be alled families12. Fig. 7.6 shows the traes of the orbits belonging tosuh a family, illustrating their lose internal relation.To understand the nature of the e�et leading to the disloations, a model system withonly the orbits of this family will be onsidered for the moment. In Fig. 7.16() the squaresgive the positions of the ondutane maxima for this model system. This redued systemalready shows all the harateristi features observed in the experiment (see Fig. 7.2).It espeially exhibits the disloations of the ondutane maxima (boxes) whih are sofar reprodued, but unexplained. As illustrated in Fig. 7.6, the members of the familyan be divided into three generations, depending on whether an orbit is o�spring of theorbit 1, 2 or 3. These are, for obvious reasons, alled grandparents, parents, and hildrengeneration. All members within a generation behave nearly idential, thus justifying thelassi�ation. In Fig. 7.16(a) and (b) the maxima of the ontributions of the grandparentand the hildren generation to the ondutane is shown. All generations13 indue nearlyequidistant maxima in B with a onstant shift to larger B if the antidot diameter isredued. This in omplete agreement with the simple Aharonov-Bohm piture disussedin Se. 7.3.1. The behavior of the individual generations is therefore readily interpreted interms of their geometrial properties. This implies, that the ontributions of the individualgeneration do not show disloations. These must be due to the interplay of the di�erentgenerations.The hildren have a larger semilassial amplitude than the grandparents. Therefore themaxima of the total Gxx (i. e. inluding all generations) follow the hildrens' maximawhere the latter exist. Otherwise, the maximum positions of the omplete family agreewith those of the grandparents. This is on�rmed by Fig. 7.16(d). The parents' inuene12These families are not to be onfused with the families of degenerate orbits ourring in systems withontinuous symmetries.13This holds also for the parents generation. It is is not shown separately, sine its ontribution isnegligible throughout.



86 Chapter 7: The hannel with antidots
0.22

0.2

0.18

1.81.9 s  →d

(d)

(a)

(b)

(c)B[T]↑

1.82.0 s  →d

0.26

0.22

0.18

0.14

2.2 1.82.0 s  →d

0.26

0.22

0.18

0.14

2.2

1.82.0 s  →d

0.26

0.22

0.18

0.14

2.2

0.30

B[T]↑

Figure 7.16: The positions of the ondutane maxima due to di�erent orbitgenerations of the family shown in Fig. 7.6: (a) grandparents, (b) hildren, () allgenerations. The parents' ontribution is not shown separately, sine it is negligible.(d) Blow-up from (a)-(). The maxima of the total ÆGxx (squares) follow the maximaof the hildren (rosses) where these exist, and those of the grandparents (triangles)otherwise. Heavy lines indiate the loi of bifurations in the (sd; B) plane.was found to be negligible throughout. The geometri di�erenes between grandparentsand hildren orbits lead to di�erent dependenies on the antidot diameter and the mag-neti �eld strengths. Therefore the generations show di�erent maxima spaings as well asdi�erent slopes of the maxima with varying sd. Neither the slopes nor the spaings mathalong the generation boundaries. This is similar to growing two materials with di�erentlattie onstants onto eah other. The resulting lattie defets are the equivalent of thedisloations observed.From this interpretation, further preditions an be dedued: (i) Saling the system doesnot a�et the lassial dynamis, so that the disloations move along the (universal) bi-furation lines. (ii) Assuming a linear dependene of the ation di�erene �S betweenhildren and grandparents on sd, the disloations are equally spaed in sd. (iii) Sal-ing S with a fator �,14 the distanes between disloations sale aording to �sd / �.These preditions are heked in Fig. 7.17, where the maxima positions of the system ofFig. 7.16(d), saled with a fator of 2 (a) and 3 (b), are shown. The disloations moveindeed on the bifuration line. They our approximately at the predited values of sd,whih are marked by pins.In the full alulation with over 60 orbits, the various families with their bifurationstrutures (gray lines in Fig. 7.15()) are superimposed. Only those disloations survivefor whih the above model senario is loally dominating and no further orbits interfere.As a result, some of the disloations disappear, some are slightly shifted in the (sd; B)14This orresponds to saling the size with � and the magneti �eld with ��1.
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This interpretation suggests that there aretwo orbit groups with di�erent behaviorspresent, their interplay being responsible forthe disloations of the maxima positions ob-served. This is in omplete agreement withthe Fourier analysis of the experimental datashown in Fig. 7.10, whih shows two dis-tint peaks. The Fourier transform of thesemilassial data for the individual orbitsgenerations is given in Fig. 7.18. For largeantidot diameter the parents (dashed) havedominant Fourier omponents, as they ex-ist in a muh larger region in B omparedto the hildren (solid). For smaller antidots,the region where hildren orbits exist rapidlygrows, and due to their large semilassial amplitude they soon dominate the Fourier spe-trum. In the intermediate regime, two separate peaks an be observed. This is the samebehavior found in the Fourier analysis of the experimental data in Fig. 7.10, where apeak at ÆB � 7mT vanished for smaller antidots, and a new peak ourred. The Fourieranalysis of the experimental data therefore supports the interpretation that the observedstruture in the maxima positions of the ondutane is due to the interplay between twoorbit generations.7.7 SummaryIn summary, the semilassial desription suessfully reprodues all experimentally ob-served features of the magnetoondutane of a mesosopi hannel with antidots. It wasadditionally demonstrated that the low numerial demands of the semilassial approxi-mation make a �t of the experimental potential possible.



88 Chapter 7: The hannel with antidotsThe variations in the maxima spaings ould by reprodued in every respet. The semi-lassial approah yields the orret value for �B, together with the average behaviorwith varying �eld and antidot diameter. Furthermore, the preditions of the amount ofshort-range variation of �B in dependene of B and sd agree with the experimental �nd-ings. The semilassial piture on�rms that these variations are not due to experimentalinauraies, but reet system properties.The disloations of the ondutane maxima as funtions of magneti �eld B and antidotdiameter sd have been shown to be related to bifurations of the leading lassial periodiorbits of the system. The disloations are due to the fat that the bifurations de�nethe border lines between regimes of di�erent predominant orbit generations, leading todi�erent dependenes of the ondutane maxima on B and sd. This indues the observeddisloations of the maximum positions, analogously to lattie defets at interfaes. As thelassial dynamis are not a�eted by a resaling of the system, the saling behavior ofthe disloations an be easily understood in the semilassial approah.These results disprove previous arguments laiming the hannel system exhibits inherentquantum features. These arguments were based on the disussion of the semilassialontributions of individual orbits. The semilassial piture proposed here, in ontrast,laims that the subtle interplay between many di�erent orbits, i. e. the variations in alltheir stabilities and ations under the hange of the system parameters, is responsible forthe observed magnetoondutane features.The way how bifurations a�et the quantum osillations in the hannel system is di�erentfrom previously reported mehanisms. Using a numerial version of uniform approxima-tions, the bifurations of the system were shown to have no loally enhaned inuene onthe ondutane. In super-deformed nulei [10℄ or ellipti billiards [57℄, in ontrast, perioddoubling orbit bifurations inuene the quantum shell struture due to their dominantorder in 1=�h. The inuene of the bifurations in the present system is also di�erent fromthe one reported for the resonant tunneling diode [114℄. There, the bifurations lead to adoubling of the period, whereas in the system onsidered here the periods of all relevantorbits are approximately onstant. Furthermore, in the resonant tunneling diode only afew orbits were found to be important, whereas the present system is dominated by amuh larger number of orbits with nearly idential ations, periods and amplitudes.


