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6 Chapter 2: Semi
lassi
al approximationsThe 
lassi�
ation of semi
lassi
al approximations in theories for integrable, purely 
haoti
and mixed systems follows roughly the histori
al development of the dis
ipline. This 
hap-ter introdu
es the 
entral ideas of semi
lassi
al approximations for the di�erent situationsfollowing more or less this 
hronologi
al order. It does not attempt, however, to reviewthe whole variety of di�erent approa
hes developed so far, but will 
on
entrate on keyideas and methods relevant for the present work.2.1 Integrable systemsThe �rst attempts that { from a modern point of view { would be 
alled semi
lassi
aldate ba
k prior to the development of wave me
hani
s. The empiri
al Bohr-Sommerfeldquantization ruleS = I p dq = 2��h � n (n 2 IN) (2.1)su

essfully explained the spe
trum of hydrogen and ionized helium. Despite huge e�orts,however, it 
ompletely failed for neutral helium. When in 1926 the wave me
hani
alapproa
h su

essfully explained this long-
onsidered problem, it superseded the Bohr-Sommerfeld s
heme, and the role 
losed orbits play for quantization was ignored for nearlyhalf a 
entury.Soon after, an expansion of the new wave me
hani
al quantum theory in powers of �hwas given by Wentzel, Kramers and Brillouin [85, 51, 20℄. It is usually 
alled WKB-approximation. The two key ideas are1. Separate the wave fun
tion in a real amplitude and a (unit) phase fa
tor a

ordingto 	(r; t) = A(r; t)eiR(r;t)=�h : (2.2)The quantum momentum of the parti
leh 	 j � i�hrj 	 i = rRA2 � i�hArA (2.3)is well de�ned and �nite in the semi
lassi
al limit �h ! 0. Inserting this ansatz inthe S
hr�odinger equation yields two equations for A and R, equivalent to the timeevolution of the real and the 
omplex part of the wave fun
tion. For a HamiltonianH = p2=2m + V (r) this results in�R�t + (rR)22m + V (r)� �h22mrAA = 0 ; (2.4)and �A�t + rRrAm + ArR2m = 0 : (2.5)These equations are the starting point of Madelung's hydrodynami
 pi
ture of quan-tum me
hani
s [56℄. The naming was motivated by the fa
t that with � := A2 andv := rR=m Eq. (2.5) takes the form of a 
ontinuity equation _�+r(�v) = 0.



2.2 Chaoti
 systems 72. The semi
lassi
al approximation 
orresponds to the limit �h! 0, whi
h is well de�nedfor Eqs. (2.4) and (2.5). In this limit the last term in Eq. 2.4, the so-
alled quantumpotential, vanishes1. This equation then takes the form of a 
lassi
al Hamilton-Ja
obiequation _R + H(r;rR) = 0. Using this analogy it 
an be shown that R is in fa
tgiven by Hamilton's prin
ipal fun
tion along a 
lassi
al path.For one-dimensional (or separable) systems the Hamilton-Ja
obi equation 
an be solved ingeneral. The 
ondition of the simple-valuedness of the wave fun
tion leads to quantization
onditions. These 
an be written down expli
itly,2 taking exa
tly the form of the Bohr-Sommerfeld rule Eq. (2.1).The 
lassi
al turning points, however, introdu
e additional subtleties.3 This was �rstrealized by Kramers [51℄, who derived additional phase fa
tors ��=2 using his 
onne
tionformulas. These fa
tors 
orrespond to phase shifts at re
e
tions. In Se
. 4.3.2 this pointwill be 
onsidered in some more detail. The quantization 
ondition is modi�ed by theadditional phases a

ording toS = I p dq = 2��h�n+ �4� (n 2 IN) : (2.6)The additional phases from the 
lassi
al turning points shift the energy spe
trum. Assu
h, they are responsible for the quantum me
hani
al zero point energy.The WKB approa
h 
an be generalized to integrable systems, i. e. systems with as many
onstants of motion as degrees of freedom. In these systems the phase-spa
e motion is
on�ned to a torus.4 The 
losed paths along whi
h the quantization in analogy to Eq. (2.6)has to be performed are the topologi
al invariant 
losed paths on this torus. In this form,it is usually named EBK after Einstein, Brillouin and Keller [45℄. Whereas for (e�e
tively)one-dimensional systems the 
lassi
al turning points lead to additional phases, in higherdimensions their role is taken by fo
using points of traje
tories in 
on�guration spa
e,the so-
alled 
austi
s. These 
orrespond to foldings in phase spa
e, where the orientationof the 
on�guration-spa
e surfa
e 
hanges. The additional phases, whi
h are nowadays
alled Maslov indi
es5, only depend on the topology of the 
lassi
al path.The Maslov indi
es are one ingredient ne
essary for a su

essful semi
lassi
al quantizationof the neutral helium whi
h was missed by Heisenberg and 
oworkers in their attemptsprior to 1926. The se
ond problem they did not take into a

ount is that Helium, athree-body problem, is not integrable, but 
haoti
. The role of 
lassi
al orbits for thequantization of 
haoti
 problems remained un
lear for another de
ade.2.2 Chaoti
 systemsThe methods presented above result in an energy quantization rule whi
h depends onindividual, 
hara
teristi
 orbits of the system. The general hope was that the 
lose 
on-1The alternative interpretation of quantum me
hani
s presented by Bohm [109℄ preserves the quantumpotential. It solves the Hamilton-Ja
obi equation in
luding this amplitude-dependent term. A re
ent workshows that this ansatz might be helpful in the interpretation of the quantum measurement pro
ess [102℄.2For expli
it examples, see, e. g., se
tion 2.4 of Ref. [100℄.3The formal reason is that at 
lassi
al turning points the quantum potential is not negligible.4This holds for bounded systems, to be pre
ise.5The de�nition of the Maslov index is not 
onsistent in the literature. In this work, the term is laxlyused for all additional phases in multiples of �=2.



8 Chapter 2: Semi
lassi
al approximationsne
tion between single orbits of the system and individual quantum states established forintegrable systems would also hold in the non-integrable 
ase. This belief turned out to bewrong, and obs
ured for a long time the way to a semi
lassi
al treatment of 
haoti
 sys-tems. In a series of papers [36, 37, 38, 39, 40℄ starting in 1967, Gutzwiller established thelong-sear
hed bridge between 
lassi
al 
haoti
 dynami
s and quantum properties of thesystem. This work 
onstitutes the foundation of modern semi
lassi
al theories. The 
en-tral result, the famous tra
e formula for the level density of a 
ompletely 
haoti
 system,has by now been re-derived using various alternative approa
hes. Whereas the originalwork of Gutzwiller started out with the Feynman path integral, Bogomolny uses a des
rip-tion of the S
hr�odinger equation in terms of a semi
lassi
al transfer operator a
ting onthe Poin
ar�e map [16℄, and Smilansky employs a s
attering approa
h [106℄. Citanovi�
 and
oworkers [101℄ 
al
ulate the quantum me
hani
al propagator K using the fa
t that K it-self solves the S
hr�odinger equation. The 
orresponding wave fun
tion is approximated bya very ni
e generalization of the multidimensional WKB s
heme to non-integrable systems.Readers interested in details on these derivations are referred to the original literature orto the re
ent reviews Refs. [100, 105℄. Here, only the main ideas leading to the Gutzwillertra
e formula will be sket
hed.2.2.1 The semi
lassi
al PropagatorThe quantum me
hani
al propagator K is the operator that propagates a wave fun
tion	 through time :	(r; t) = K(r; r0; t)	(r0; 0) : (2.7)A semi
lassi
al approximation 
an be derived starting out with the Feynman path integralexpression of the propagatorK(r; r0; t) = Z Dr exp� i�hR(r; r0; t)� ; (2.8)where R is Hamilton's prin
ipal fun
tion. R Dr denotes an in�nite-dimensional integra-tion. It extends over all paths from r0 to r in time t. The integrand is rapidly os
illating,so that most of the 
ontributions to K 
an
el. This type of integrals 
an be well ap-proximated using the stationary phase approximation, one of the 
entral te
hniques insemi
lassi
s. In one dimension, it is given byZ 
2
1 e i�hR(
) d
 = Z 
2
1 e i�h (R0+R2(
�
0)2+R3(
�
0)3+ ::: ) d
� Z 1�1 e i�h (R0+R2(
�
0)2) d
 = e i�hR0r �jR2j ei sign(R2)�=4 : (2.9)If more stationary points exists, their 
ontributions have to be summed up. The gener-alization to more dimensions is straight forward. The stationary points of the exponentof Eq. (2.8) 
orrespond to the 
lassi
al paths. Therefore the stationary phase approxima-tion of K 
onsists of the repla
ement of the integral over all paths from r0 to r by theappropriately weighted 
lassi
al ones.



2.2 Chaoti
 systems 9The resulting approximation of the propagator was { apart from the indi
es �, whi
h againstem from 
austi
 points6 { already proposed by Van Vle
k [86℄ ba
k in 1928:Ks
(r; r0; t) = � 12�i�h�D=2 X�(r;r0;t)sdet ���� �2R�r�r0 ���� exp� i�hR(r; r0; t)� i� �2� : (2.10)Here �(r; r0; t) denotes the sum over all 
lassi
al paths 
onne
ting r and r0 in time t, andD is the system dimension. Eq. (2.10) is one of the key formulas to modern semi
lassi
altheories.2.2.2 The semi
lassi
al Green's fun
tionMore 
onvenient than the propagator is the Green's fun
tion, its (half-sided) Fourier trans-form with respe
t to timeG(r; r0;E) = � i�h lim"!0Z 10 K(r; r0; t) exp� i�h (E � i")t� dt : (2.11)Gutzwiller treated the 
ase where all 
lassi
al orbits are isolated in phase spa
e, i. e. haveno neighbor with the same energy and a
tion at in�nitesimal distan
e. If additionally thea
tions S of the 
lassi
al traje
tories are mu
h larger than �h, the integrations perpendi
ularto the 
lassi
al paths 
an be performed in stationary phase approximation. This leads tothe semi
lassi
al approximation of the Green's fun
tion a

ording toGs
(r; r0;E) = 2�(2�i�h)D+12 X�(r;r0;E)sdet ����Sr0r Sr0ESEr SEE ���� exp� i�hS(r; r0;E) � i��2� ; (2.12)where Skl denotes the partial derivatives �2S=(�k �l). The summation extends over all
lassi
al paths � with �xed energy E 
onne
ting r0 and r.The general strategy for semi
lassi
al approximations is to �nd an exa
t expression of thedesired quantity in terms of Green's fun
tions. Repla
ing the Green's fun
tions by theirsemi
lassi
al approximations yields a semi
lassi
al formula for the desired observable. Thispro
edure will be used in the following se
tion to derive a semi
lassi
al formula for thelevel density. In 
hapter 5 the same approa
h will lead to a semi
lassi
al expression forthe 
ondu
tivity.2.2.3 The semi
lassi
al level densityThe level density 
an be expressed in terms of Green's fun
tion asg(E) = � 1� lim"!0 Im [Tr(G(r; r; E + i"))℄ : (2.13)The 
lassi
al paths from r to r, i. e. the 
losed paths, fall into two groups: The orbitswith zero length, and �nite length orbits returning to r. The 
ontribution of the zerolength orbits has to be evaluated separately, sin
e they violate the 
ondition S � �h,6These Morse indi
es slightly di�er from the Maslov indi
es �.



10 Chapter 2: Semi
lassi
al approximationswhi
h is required for the validity of the stationary phase approximation. These orbitslead to the average density of states ~g(E), whi
h alternatively 
an be 
al
ulated usingthe familiar Thomas-Fermi relation. From now on, only the 
ontributions of �nite-lengthorbits will be 
onsidered. These are responsible for the os
illatory deviations Æg(E) fromthe smooth part ~g(E). Performing another stationary phase approximation to evaluatethe tra
e integral yields the famous Gutzwiller tra
e formulaÆg(E) � 1��hXpo TPPOqjdet(fM � I1)j| {z }:= Apo 
os�S�h � ��2� : (2.14)The summation extends over all 
lassi
al periodi
 orbits po of the system. TPPO is theperiod of the primitive orbit, i. e. the part of the orbit until it �rst 
loses in phase spa
e.The stability matrix fM is given by the non-trivial part of the Monodromy matrix M . It isrelated to the stability of an orbit. This quantity is explained in detail in appendix A.1.2.The fa
tors in front of the 
os-term are usually 
olle
tively 
alled semi
lassi
al amplitudeApo of an orbit. Formula Eq. (2.14) is often given in an analog form whi
h separates thesum over the di�erent orbits from the sum over their repetitions. In this thesis the sumover the repetitions should always be in
luded in the sum over all orbits.Please note that the tra
e formula for the semi
lassi
al quantization of 
haoti
 systemshas a 
ompletely di�erent stru
ture than the quantization 
onditions for the integrable
ase. Whereas for the latter individual paths in the system are related to single quantumstates, in 
haoti
 systems ea
h periodi
 orbit 
ontributes to all energy levels.The Gutzwiller tra
e formula provided the basis for a su

essful semi
lassi
al treatmentof neutral helium, whi
h was �nally a

omplished in 1991 [28℄. 65 years after the sameproblem had set an end to the empiri
al quantization rules, this was a great su

ess for thegrowing semi
lassi
al 
ommunity. In the following years sear
hing for tra
es of 
lassi
alorbits in quantum spe
tra as well as superposing 
lassi
al traje
tories to approximate shellstru
tures or even individual quantum levels have been re
ognized as powerful theoreti
altools.For the purpose of this work, two generalizations of the tra
e formula are needed, namelythe extension to 
ontinuous symmetries and to systems with mixed phase spa
e. Thesewill be presented in the following se
tions.2.3 Continuous symmetriesFor systems with 
ontinuous symmetries the Fourier integral Eq. (2.11) 
an not be eval-uated as sket
hed above. A suitable adaption of the pro
edure has been proposed byStrutinsky and Magner [76℄ and, in a more general form, by Creagh and Littlejohn [23℄.The main idea of the latter generalization is a separation into a symmetry-free systemwhi
h is treated in analogy to the Gutzwiller 
ase, and the symmetry degrees of freedom,over whi
h the integrations are performed exa
tly. The stru
ture of the tra
e formulaEq. (2.14) remains essentially un
hanged by this pro
edure, but the de�nition of the am-plitudes is di�erent, re
e
ting the di�erent stru
ture of the underlying 
lassi
al dynami
s:Æg(E) � � 1�Im " 1i�h 1(2�i�h)k=2 Xpo Zpo dt d�(g) jKpoj�1=2eiSpo�h �i�po �2 # =



2.4 Mixed phase spa
e 11=: �� 1��h� k+22 Im "Xpo ApoeiSpo�h �i�po �2 # : (2.15)The dimensionality of the symmetry is denoted by k. The integral over t repla
es theperiod of the primitive orbit TPPO in the Gutzwiller 
ase. Rpo d�(g) is the integration overthe symmetry, where �(g) denotes the measure of the symmetry group. The stabilityterm of the Gutzwiller formula is repla
ed by jKj1=2, whereK = Q det(W ) det(fM � I) : (2.16)Here fM is the stability matrix of the symmetry-redu
ed system. Q depends only on thetype of symmetry. For Abelian symmetries Q = 1, and for three-dimensional rotationalsymmetry Q = J�2, where J denotes the total angular momentum. Traje
tories whi
hare periodi
 in the symmetry-redu
ed system do not ne
essarily 
lose in 
omplete phasespa
e. This leads to the additional fa
tor det(W ), whereWij = ��i�Jj : (2.17)The �i are the operators of the symmetry and the Ji are the 
orresponding 
onservedquantities. The topologi
al index � is given by � = � � Æ, where Æ is the number ofnegative eigenvalues of W . The Maslov index � is the same as in the original Gutzwillerformula.This approa
h 
an deal with 
ontinuous symmetries of arbitrary dimensionality. Ea
hsymmetry dimension 
orresponds to one 
onstant of motion Ji. Eq. (2.15) applies evento integrable systems, where the number of Ji equals the degrees of freedom. The tra
eformula of Creagh and Littlejohn therefore provides a uni�ed des
ription of integrable and
haoti
 systems. Although it 
an also be applied to systems with mixed phase spa
e, it
annot deal with the transition from regular motion to 
haos. This problem will be dealtwith in the following se
tion.The power in �h of the 
ontributions of the 
lassi
al periodi
 orbits depends on the di-mension of the symmetry. This implies that the amplitude of the os
illating part of thelevel density is larger for highly symmetri
 systems. In systems where di�erent orbitshave di�erent dimensions of symmetry, their power in �h is di�erent. The leading-order
ontribution in �h stems from the orbits with the highest 
ontinuous symmetry, whereasthe other orbits give rise to �h 
orre
tions. In 
hapter 4 this point will be dis
ussed in moredetail for the example of the disk billiard.2.4 Mixed phase spa
eThe semi
lassi
al methods des
ribed above apply either to the integrable or to the 
om-pletely 
haoti
 situation. Many realisti
 physi
al systems, however, show a mixed phase-spa
e stru
ture. This introdu
es additional 
ompli
ations for semi
lassi
 approximations,whi
h are not 
ompletely settled by now. Only the ansatz of Bogomolny [16℄ does notexpli
itly assume regular or 
haoti
 motion, so that it 
an deal with mixed phase spa
eas well { but unfortunately only on a numeri
al level. The standard Gutzwiller approa
h
annot 
ope with the transition from regular to 
haoti
 behavior. The extensions whi
h
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lassi
al approximationshave been worked out to over
ome this limitation will be introdu
ed in this se
tion. Theybuild the basis for the 
onsiderations in the following 
hapters.As pointed out above, the phase-spa
e motion of an integrable system is 
on�ned to a torus.The periodi
 orbits of those systems are given by the repetitions of the elementary loopsof the Bohr-Sommerfeld quantization. There are only a few su
h orbits up to a givenmaximum period Tm. Their number in
reases as a power law with Tm. In 
ompletely
haoti
7 systems, however, the number of periodi
 orbits in
reases exponentially with theperiod a

ording to N / 1=(hTm) exp(hTm), where h is the topologi
al entropy.This implies that a system on its way from regular to 
haoti
 motion 
reates new 
lassi
alperiodi
 orbits. These 
reation points are 
alled orbit bifur
ations. The underlying me
h-anism is visualized in Fig. 2.1. There, the situation prior to the integration of Eq. (2.13)is illustrated. The solid line gives the a
tion in dependen
e of r, and the arrows indi
atethe stationary points, i. e. the 
lassi
al periodi
 paths. Varying an external parameter of
r→

(d)

r→

(c)↑

S

r→

(a)

r→

(b)Figure 2.1: The 
lassi
al a
tion S(r; r;E) of a one-dimensional system in depen-den
e of an external parameter. The parabolas give the lo
al quadrati
 approximationsat the stationary points.the system 
hanges the fun
tional dependen
e of S on r. The two extrema, i. e., the twoperiodi
 orbits in (a) approa
h (b), fall together (
) and �nally disappear (d). From rightto left, these pi
tures illustrate the birth of two periodi
 orbits. This is the simplest typeof bifur
ation, 
alled tangent bifur
ation.In Gutzwiller's derivation, the integration of Eq. (2.13) is performed in stationary phaseapproximation. A

ording to Eq. (2.9), this means to repla
e the integral over r by theintegrals over the parabolas approximating S(r; r;E) at the stationary points. Thesese
ond-order approximations are given by the dotted lines in Fig. 2.1. Obviously thestationary phase approximation gets ina

urate for orbits in 
lose vi
inity. At the pointwhere the orbits 
oin
ide the �t parabolas have zero 
urvature. Sin
e the amplitude ofthe orbits is in this approximation proportional the inverse 
urvature of these parabolas,the Gutzwiller approximation diverges at bifur
ation points.To over
ome this problem, a lo
al expansion to higher order in the a
tion has been pro-posed by de Almeida and Hannay [8℄ or Kus et al. [53℄. Su
h a lo
al approximation,however, does not reprodu
e the Gutzwiller limit of well separated orbits. Retaining boththe 
orre
t asymptoti
 and lo
al behavior is possible using uniform approximations, whi
hinterpolate smoothly between the limiting 
ases. These have been developed most sys-temati
ally by S
homerus and Sieber [72, 70, 73℄. Bifur
ations 
an be 
lassi�ed a

ordingto their normal form, and the authors give expli
it formulas for all generi
 bifur
ations interms of the amplitudes, a
tions and Maslov indi
es of the orbits engaged. Non-generi

ases, e. g. systems with dis
rete symmetries, are not dire
tly 
overed by these formulasand need spe
ial 
are. The expressions for the two types of bifur
ations relevant for this7This holds for ergodi
 systems, to be pre
ise.



2.4 Mixed phase spa
e 13thesis are given in appendix B. Eqs. (B.7) and (B.8) apply to the tangent bifur
ation, andEq. (B.15) to the period doubling bifur
ation.The Gutzwiller approximation only 
ontains information about the 
lassi
al phase-spa
estru
ture. At �rst sight, the uniform approximations of S
homerus and Sieber are ex-pressed in dependen
e of the same terms. They in
lude, however, also 
ontributions ofghost orbits, i. e., analyti
 
ontinuations of orbits beyond the regime where they 
lassi
allyexist. This ex
eeds the purely 
lassi
al phase spa
e properties. In systems where theperiodi
 orbits are known analyti
ally, this additional information is readily available. Ifthe equations of motion are solved numeri
ally, however, this information 
an hardly bea

essed. This problem will be examined in more detail in 
hapter 7.As 
an be dedu
ed from the analyti
al lo
al form of the bifur
ation, the 
ontributions ofthe orbits engaged in a bifur
ation are in
reased by a fa
tor �h�Æ [70℄. Æ is positive; its valuedepends on the type of the bifur
ation. The negative exponent shows that the bifur
ationsare of leading order in �h. Thus, these points dominate in the semi
lassi
al limit �h=S ! 0(with S being the a
tion of a typi
al periodi
 orbit in the system). This gives a moreformal explanation for the divergen
e of the standard Gutzwiller-like approximation atthese points. The problems related with bifur
ations will be examined in detail for thelevel density of the disk billiard in 
hapter 4 and for the magneto
ondu
tan
e of a 
hannelwith antidots in 
hapter 7.Systems with mixed phase spa
e may exhibit even more 
ompli
ated stru
tures in the
lassi
al dynami
s than the bifur
ations dis
ussed above. Just as bifur
ations o

ur whenin dependen
e of an external parameter two (or more) orbits approa
h and �nally 
oin-
ide, also two bifur
ations 
an approa
h and fall together. This is 
alled a bifur
ation of
odimension 2.8 Treating those requires normal forms of even higher order in the a
tion.The bifur
ations of 
odimension 2 have re
ently been 
lassi�ed by S
homerus [69, 71℄.He also presented formulas for their uniform approximation. For bifur
ations of higher
odimension, however, a general treatment is still la
king. The analyti
 
omplexity ofthe 
orresponding uniform formulae would anyway make them useless for pra
ti
al appli-
ations. For the 
ontext of this work, the 
onsideration of the 'ordinary' bifur
ations of
odimension 1 will be suÆ
ient.With the extension to systems with 
ontinuous symmetries of Se
. 2.3 and in
luding thebifur
ations by uniform approximations, integrable and 
haoti
 systems as well as systemswith mixed phase spa
e 
an be des
ribed semi
lassi
ally. This generalized tra
e formula
onstitutes the main tool for the present work.Prior to the appli
ation of this semi
lassi
al tra
e formula to the disk billiard, some te
h-ni
al details have to be worked out. This will be done in 
hapter 3, where the 
onvergen
eproperties of the orbit sum are examined in the ne
essary detail. Readers mainly interestedin physi
s are invited to page 27 immediately.8This is not the exa
t de�nition of a bifur
ation of 
odimension 2, sin
e some \bifur
ations of bifur
a-tions" 
an still be des
ribed in a one-dimensional parameter spa
e. This distin
tion, however, is irrelevantin the 
ontext of this work.




