Chapter 2

Semiclassical approximations

Semaclassics are usuwally defined as approzimations of the quantum mechanical equa-
tions to leading order in fi. This definition is accurate, short, and self-contained —
but by no means self-explaining. This chapter first provides the necessary context by
giving a short overview of the history of semiclassical approzimations before presenting

the modern form used in the subsequent chapters.
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6 CHAPTER 2: SEMICLASSICAL APPROXIMATIONS

The classification of semiclassical approximations in theories for integrable, purely chaotic
and mixed systems follows roughly the historical development of the discipline. This chap-
ter introduces the central ideas of semiclassical approximations for the different situations
following more or less this chronological order. It does not attempt, however, to review
the whole variety of different approaches developed so far, but will concentrate on key
ideas and methods relevant for the present work.

2.1 Integrable systems

The first attempts that — from a modern point of view — would be called semiclassical
date back prior to the development of wave mechanics. The empirical Bohr-Sommerfeld
quantization rule

S:j{pdq:%rh-n (n € IN) (2.1)

successfully explained the spectrum of hydrogen and ionized helium. Despite huge efforts,
however, it completely failed for neutral helium. When in 1926 the wave mechanical
approach successfully explained this long-considered problem, it superseded the Bohr-
Sommerfeld scheme, and the role closed orbits play for quantization was ignored for nearly
half a century.

Soon after, an expansion of the new wave mechanical quantum theory in powers of A
was given by Wentzel, Kramers and Brillouin [85, 51, 20]. It is usually called WKB-
approzimation. The two key ideas are

1. Separate the wave function in a real amplitude and a (unit) phase factor according
to

U(r,t) = A(r, t)e D/ (2.2)
The quantum momentum of the particle
(V| —ihV| ¥ ) = VRA? —ihAVA (2.3)

is well defined and finite in the semiclassical limit h — 0. Inserting this ansatz in
the Schrodinger equation yields two equations for A and R, equivalent to the time
evolution of the real and the complex part of the wave function. For a Hamiltonian
H = p?/2m + V(r) this results in
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ot + 2m +Vi(r) 2m A ' (2:4)
and
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These equations are the starting point of Madelung’s hydrodynamic picture of quan-
tum mechanics [56]. The naming was motivated by the fact that with p := A% and
v := VR/m Eq. (2.5) takes the form of a continuity equation p + V(pv) = 0.
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2. The semiclassical approximation corresponds to the limit 2z — 0, which is well defined
for Egs. (2.4) and (2.5). In this limit the last term in Eq. 2.4, the so-called quantum
potential, vanishes'. This equation then takes the form of a classical Hamilton-Jacobi
equation R + H(r,VR) = 0. Using this analogy it can be shown that R is in fact
given by Hamilton’s principal function along a classical path.

For one-dimensional (or separable) systems the Hamilton-Jacobi equation can be solved in
general. The condition of the simple-valuedness of the wave function leads to quantization
conditions. These can be written down explicitly.? taking exactly the form of the Bohr-
Sommerfeld rule Eq. (2.1).

3 This was first

The classical turning points, however, introduce additional subtleties.
realized by Kramers [51], who derived additional phase factors pm/2 using his connection
formulas. These factors correspond to phase shifts at reflections. In Sec. 4.3.2 this point
will be considered in some more detail. The quantization condition is modified by the

additional phases according to

S = flp dq = 27h (n + ';—L> (n € IN) . (2.6)

The additional phases from the classical turning points shift the energy spectrum. As
such, they are responsible for the quantum mechanical zero point energy.

The WKB approach can be generalized to integrable systems, i.e. systems with as many
constants of motion as degrees of freedom. In these systems the phase-space motion is
confined to a torus.* The closed paths along which the quantization in analogy to Eq. (2.6)
has to be performed are the topological invariant closed paths on this torus. In this form,
it is usually named EBK after Einstein, Brillouin and Keller [45]. Whereas for (effectively)
one-dimensional systems the classical turning points lead to additional phases, in higher
dimensions their role is taken by focusing points of trajectories in configuration space,
the so-called caustics. These correspond to foldings in phase space, where the orientation
of the configuration-space surface changes. The additional phases, which are nowadays
called Maslov indices®, only depend on the topology of the classical path.

The Maslov indices are one ingredient necessary for a successful semiclassical quantization
of the neutral helium which was missed by Heisenberg and coworkers in their attempts
prior to 1926. The second problem they did not take into account is that Helium, a
three-body problem, is not integrable, but chaotic. The role of classical orbits for the
quantization of chaotic problems remained unclear for another decade.

2.2 Chaotic systems

The methods presented above result in an energy quantization rule which depends on
individual, characteristic orbits of the system. The general hope was that the close con-

'The alternative interpretation of quantum mechanics presented by Bohm [109] preserves the quantum
potential. It solves the Hamilton-Jacobi equation including this amplitude-dependent term. A recent work
shows that this ansatz might be helpful in the interpretation of the quantum measurement process [102].

?For explicit examples, see, e.g., section 2.4 of Ref. [100].

3The formal reason is that at classical turning points the quantum potential is not negligible.

4This holds for bounded systems, to be precise.

®The definition of the Maslov index is not consistent in the literature. In this work, the term is laxly
used for all additional phases in multiples of 7/2.
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nection between single orbits of the system and individual quantum states established for
integrable systems would also hold in the non-integrable case. This belief turned out to be
wrong, and obscured for a long time the way to a semiclassical treatment of chaotic sys-
tems. In a series of papers [36, 37, 38, 39, 40] starting in 1967, Gutzwiller established the
long-searched bridge between classical chaotic dynamics and quantum properties of the
system. This work constitutes the foundation of modern semiclassical theories. The cen-
tral result, the famous trace formula for the level density of a completely chaotic system,
has by now been re-derived using various alternative approaches. Whereas the original
work of Gutzwiller started out with the Feynman path integral, Bogomolny uses a descrip-
tion of the Schrodinger equation in terms of a semiclassical transfer operator acting on
the Poincaré map [16], and Smilansky employs a scattering approach [106]. Citanovi¢ and
coworkers [101] calculate the quantum mechanical propagator K using the fact that K it-
self solves the Schrodinger equation. The corresponding wave function is approximated by
a very nice generalization of the multidimensional WKB scheme to non-integrable systems.
Readers interested in details on these derivations are referred to the original literature or
to the recent reviews Refs. [100, 105]. Here, only the main ideas leading to the Gutzwiller
trace formula will be sketched.

2.2.1 The semiclassical Propagator

The quantum mechanical propagator K is the operator that propagates a wave function
¥ through time :

U(r,t) = K(r,r';t)U(r',0) . (2.7)

A semiclassical approximation can be derived starting out with the Feynman path integral
expression of the propagator

K(r,v't) = /D'r' exp <%R(r,fr”;t)> , (2.8)

where R is Hamilton’s principal function. [ Dr denotes an infinite-dimensional integra-
tion. It extends over all paths from 7’ to = in time ¢. The integrand is rapidly oscillating,
so that most of the contributions to K cancel. This type of integrals can be well ap-
proximated using the stationary phase approximation, one of the central techniques in
semiclassics. In one dimension, it is given by

v 2 ‘ .
/ e gy = / o7 (BotRa(v=70)" +Rs(v—0)*+...) dy
771

/OO e (Ro+R2(v=70)%) dy = e Bo \/ |}73T | ¢! sign(F)m/4 (2.9)

If more stationary points exists, their contributions have to be summed up. The gener-
alization to more dimensions is straight forward. The stationary points of the exponent

2

of Eq. (2.8) correspond to the classical paths. Therefore the stationary phase approxima-
tion of K consists of the replacement of the integral over all paths from =’ to r by the
appropriately weighted classical ones.



2.2 CHAOTIC SYSTEMS 9

The resulting approximation of the propagator was — apart from the indices v, which again
stem from caustic points® — already proposed by Van Vleck [86] back in 1928:

D/2
Ko (r.7';t) = ! / Z det -
e 2mih arar'

rrt

exp (%R(r,r';t) - il/%) . (2.10)

Here ['(r, 7';t) denotes the sum over all classical paths connecting r and »’ in time ¢, and
D is the system dimension. Eq. (2.10) is one of the key formulas to modern semiclassical
theories.

2.2.2 The semiclassical Green’s function

More convenient than the propagator is the Green’s function, its (half-sided) Fourier trans-
form with respect to time

G(r,v"; E) ———11111/ K(r,7';t) exp (T(E )t> dt . (2.11)

fi e—0

Gutzwiller treated the case where all classical orbits are isolated in phase space, i. e. have
no neighbor with the same energy and action at infinitesimal distance. If additionally the
actions S of the classical trajectories are much larger than #, the integrations perpendicular
to the classical paths can be performed in stationary phase approximation. This leads to
the semiclassical approximation of the Green’s function according to

rr Sr’E
Ser SEE

Gee(r,7"; E) = Z det

(27717L = T(rr:E)

exp (%S(r v E) —m%) (2.12)

where Sj; denotes the partial derivatives 625/(3k dl). The summation extends over all
classical paths T with fixed energy E connecting v’ and 7.

The general strategy for semiclassical approximations is to find an exact expression of the
desired quantity in terms of Green’s functions. Replacing the Green’s functions by their
semiclassical approximations yields a semiclassical formula for the desired observable. This
procedure will be used in the following section to derive a semiclassical formula for the
level density. In chapter 5 the same approach will lead to a semiclassical expression for
the conductivity.

2.2.3 The semiclassical level density

The level density can be expressed in terms of Green’s function as

1
g(E) = —=lim Im [Te(G(r,r, E + ic))] . (2.13)
’ T e—0 '
The classical paths from = to », i.e. the closed paths, fall into two groups: The orbits
with zero length, and finite length orbits returning to ». The contribution of the zero
length orbits has to be evaluated separately, since they violate the condition S > h,

SThese Morse indices slightly differ from the Maslov indices .
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which is required for the validity of the stationary phase approximation. These orbits
lead to the average density of states g(F), which alternatively can be calculated using
the familiar Thomas-Fermi relation. From now on, only the contributions of finite-length
orbits will be considered. These are responsible for the oscillatory deviations dg(E) from
the smooth part g(E). Performing another stationary phase approximation to evaluate
the trace integral yields the famous Gutzwiller trace formula

dg(E) ~ E Z _Tero cos <§ - ll,£> . (2.14)

TS etV —m| NP2

S
= Ap,

The summation extends over all classical periodic orbits po of the system. Tppo is the
period of the primitive orbit, i.e. the part of the orbit until it first closes in phase space.
The stability matriz M is given by the non-trivial part of the Monodromy matriz M. 1t is
related to the stability of an orbit. This quantity is explained in detail in appendix A.1.2.
The factors in front of the cos-term are usually collectively called semiclassical amplitude
Apo of an orbit. Formula Eq. (2.14) is often given in an analog form which separates the
sum over the different orbits from the sum over their repetitions. In this thesis the sum
over the repetitions should always be included in the sum over all orbits.

Please note that the trace formula for the semiclassical quantization of chaotic systems
has a completely different structure than the quantization conditions for the integrable
case. Whereas for the latter individual paths in the system are related to single quantum
states, in chaotic systems each periodic orbit contributes to all energy levels.

The Gutzwiller trace formula provided the basis for a successful semiclassical treatment
of neutral helium, which was finally accomplished in 1991 [28]. 65 years after the same
problem had set an end to the empirical quantization rules, this was a great success for the
growing semiclassical community. In the following years searching for traces of classical
orbits in quantum spectra as well as superposing classical trajectories to approximate shell
structures or even individual quantum levels have been recognized as powerful theoretical
tools.

For the purpose of this work, two generalizations of the trace formula are needed, namely
the extension to continuous symmetries and to systems with mixed phase space. These
will be presented in the following sections.

2.3 Continuous symmetries

For systems with continuous symmetries the Fourier integral Eq. (2.11) can not be eval-
uated as sketched above. A suitable adaption of the procedure has been proposed by
Strutinsky and Magner [76] and, in a more general form, by Creagh and Littlejohn [23].
The main idea of the latter generalization is a separation into a symmetry-free system
which is treated in analogy to the Gutzwiller case, and the symmetry degrees of freedom,
over which the integrations are performed exactly. The structure of the trace formula
Eq. (2.14) remains essentially unchanged by this procedure, but the definition of the am-
plitudes is different, reflecting the different structure of the underlying classical dynamics:

1 11 e .
0g(E) ~ —=Im |———=2>" [ dtd K|/ 26 R =i s | =
9(E) T m [ih (27ri7'1,)]‘°'/2 o /po #(g) 1Kol ‘ ’
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1 k42
2
= - (E) Im

The dimensionality of the symmetry is denoted by k. The integral over t replaces the

>

:Spo L3
D Apoe! W iR (2.15)
po

period of the primitive orbit Tppo in the Gutzwiller case. fpo dp(g) is the integration over
the symmetry, where p(g) denotes the measure of the symmetry group. The stability
term of the Gutzwiller formula is replaced by |K |1/ 2 where

K = Qdet(W)det(M —1I) . (2.16)

Here M is the stability matrix of the symmetry-reduced system. ) depends only on the
type of symmetry. For Abelian symmetries @ = 1, and for three-dimensional rotational
symmetry Q = J~2, where J denotes the total angular momentum. Trajectories which
are periodic in the symmetry-reduced system do not necessarily close in complete phase
space. This leads to the additional factor det(W), where

00);

Wi = : 2.17

The ©; are the operators of the symmetry and the J; are the corresponding conserved
quantities. The topological index o is given by ¢ = p — §, where ¢ is the number of
negative eigenvalues of W. The Maslov index p is the same as in the original Gutzwiller
formula.

This approach can deal with continuous symmetries of arbitrary dimensionality. Each
symmetry dimension corresponds to one constant of motion J;. Eq. (2.15) applies even
to integrable systems, where the number of J; equals the degrees of freedom. The trace
formula of Creagh and Littlejohn therefore provides a unified description of integrable and
chaotic systems. Although it can also be applied to systems with mixed phase space, it
cannot deal with the transition from regular motion to chaos. This problem will be dealt
with in the following section.

The power in A of the contributions of the classical periodic orbits depends on the di-
mension of the symmetry. This implies that the amplitude of the oscillating part of the
level density is larger for highly symmetric systems. In systems where different orbits
have different dimensions of symmetry, their power in h is different. The leading-order
contribution in % stems from the orbits with the highest continuous symmetry, whereas
the other orbits give rise to i corrections. In chapter 4 this point will be discussed in more

detail for the example of the disk billiard.

2.4 Mixed phase space

The semiclassical methods described above apply either to the integrable or to the com-
pletely chaotic situation. Many realistic physical systems, however, show a mixed phase-
space structure. This introduces additional complications for semiclassic approximations,
which are not completely settled by now. Only the ansatz of Bogomolny [16] does not
explicitly assume regular or chaotic motion, so that it can deal with mixed phase space
as well — but unfortunately only on a numerical level. The standard Gutzwiller approach
cannot cope with the transition from regular to chaotic behavior. The extensions which
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have been worked out to overcome this limitation will be introduced in this section. They
build the basis for the considerations in the following chapters.

As pointed out above, the phase-space motion of an integrable system is confined to a torus.
The periodic orbits of those systems are given by the repetitions of the elementary loops
of the Bohr-Sommerfeld quantization. There are only a few such orbits up to a given
maximum period T},. Their number increases as a power law with 7,,. In completely
chaotic” systems, however, the number of periodic orbits increases exponentially with the
period according to N o 1/(hT,,) exp(hTy, ), where h is the topological entropy.

This implies that a system on its way from regular to chaotic motion creates new classical
periodic orbits. These creation points are called orbit bifurcations. The underlying mech-
anism is visualized in Fig. 2.1. There, the situation prior to the integration of Eq. (2.13)
is illustrated. The solid line gives the action in dependence of r, and the arrows indicate
the stationary points, i.e. the classical periodic paths. Varying an external parameter of

T

(d)

—

Figure 2.1:  The classical action S(r,v; E) of a one-dimensional system in depen-
dence of an external parameter. The parabolas give the local quadratic approzimations
at the stationary points.

the system changes the functional dependence of S on r. The two extrema, i.e., the two
periodic orbits in (a) approach (b), fall together (¢) and finally disappear (d). From right
to left, these pictures illustrate the birth of two periodic orbits. This is the simplest type
of bifurcation, called tangent bifurcation.

In Gutzwiller’s derivation, the integration of Eq. (2.13) is performed in stationary phase
approximation. According to Eq. (2.9), this means to replace the integral over = by the
integrals over the parabolas approximating S(7,r;E) at the stationary points. These
second-order approximations are given by the dotted lines in Fig. 2.1. Obviously the
stationary phase approximation gets inaccurate for orbits in close vicinity. At the point
where the orbits coincide the fit parabolas have zero curvature. Since the amplitude of
the orbits is in this approximation proportional the inverse curvature of these parabolas,
the Gutzwiller approximation diverges at bifurcation points.

To overcome this problem, a local expansion to higher order in the action has been pro-
posed by de Almeida and Hannay [8] or Kus et al. [53]. Such a local approximation,
however, does not reproduce the Gutzwiller limit of well separated orbits. Retaining both
the correct asymptotic and local behavior is possible using uniform approximations, which
interpolate smoothly between the limiting cases. These have been developed most sys-
tematically by Schomerus and Sieber [72, 70, 73]. Bifurcations can be classified according
to their normal form, and the authors give explicit formulas for all generic bifurcations in
terms of the amplitudes, actions and Maslov indices of the orbits engaged. Non-generic
cases, e. g. systems with discrete symmetries, are not directly covered by these formulas
and need special care. The expressions for the two types of bifurcations relevant for this

"This holds for ergodic systems, to be precise.
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thesis are given in appendix B. Egs. (B.7) and (B.8) apply to the tangent bifurcation, and
Eq. (B.15) to the period doubling bifurcation.

The Gutzwiller approximation only contains information about the classical phase-space
structure. At first sight, the uniform approximations of Schomerus and Sieber are ex-
pressed in dependence of the same terms. They include, however, also contributions of
ghost orbits, i. e., analytic continuations of orbits beyond the regime where they classically
exist. This exceeds the purely classical phase space properties. In systems where the
periodic orbits are known analytically, this additional information is readily available. If
the equations of motion are solved numerically, however, this information can hardly be
accessed. This problem will be examined in more detail in chapter 7.

As can be deduced from the analytical local form of the bifurcation, the contributions of
the orbits engaged in a bifurcation are increased by a factor R0 [70]. 0 is positive; its value
depends on the type of the bifurcation. The negative exponent shows that the bifurcations
are of leading order in h. Thus, these points dominate in the semiclassical limit #/S — 0
(with S being the action of a typical periodic orbit in the system). This gives a more
formal explanation for the divergence of the standard Gutzwiller-like approximation at
these points. The problems related with bifurcations will be examined in detail for the
level density of the disk billiard in chapter 4 and for the magnetoconductance of a channel
with antidots in chapter 7.

Systems with mixed phase space may exhibit even more complicated structures in the
classical dynamics than the bifurcations discussed above. Just as bifurcations occur when
in dependence of an external parameter two (or more) orbits approach and finally coin-
cide, also two bifurcations can approach and fall together. This is called a bifurcation of
codimension 2.8 Treating those requires normal forms of even higher order in the action.
The bifurcations of codimension 2 have recently been classified by Schomerus [69, 71].
He also presented formulas for their uniform approximation. For bifurcations of higher
codimension, however, a general treatment is still lacking. The analytic complexity of
the corresponding uniform formulae would anyway make them useless for practical appli-
cations. For the context of this work, the consideration of the ’ordinary’ bifurcations of
codimension 1 will be sufficient.

With the extension to systems with continuous symmetries of Sec. 2.3 and including the
bifurcations by uniform approximations, integrable and chaotic systems as well as systems
with mixed phase space can be described semiclassically. This generalized trace formula
constitutes the main tool for the present work.

Prior to the application of this semiclassical trace formula to the disk billiard, some tech-
nical details have to be worked out. This will be done in chapter 3, where the convergence
properties of the orbit sum are examined in the necessary detail. Readers mainly interested
in physics are invited to page 27 immediately.

8 P .. . . . . . Qe . .

This is not the exact definition of a bifurcation of codimension 2, since some “bifurcations of bifurca-
tions” can still be described in a one-dimensional parameter space. This distinction, however, is irrelevant
in the context of this work.






