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Chapter 1

Introduction

Mesoscopic systems, a rapidly progressing field of physical research in the last
two decades, are of increasing technological and commercial interest. Semiclassical
approrimations, i. e. expansions of quantum mechanical equations to leading order
in h, are appropriate tools for the theoretical description of these systems in between
the microscopic and the macroscopic regime. The validity of these approrimations
requires higher-order h corrections to be negligible. The influence of higher-order cor-
rections is studied theoretically using model systems, and their contributions are traced

down in experimental data on magnetoconductance.

Since the early days of quantum mechanics the question how the wave approach is related
to the classical description has not been satisfactorily settled. For nearly one century now
physicists work with either the classical or the quantum approach, *well knowing’ in which
cases the one or the other theoretical description is appropriate. Although the general
belief is that quantum mechanics is the basic theory and that classical behavior corresponds
to the limit for large systems!, this relation has not been rigorously established. The open
questions concern on the one hand the properties of the transition region between quantum
mechanical and classical behavior, the so-called mesoscopic regime. On the other hand
the nature of the classical and the quantum measurement process is not completely clear
by now.

In the present work, only the first question is considered. Readers interested in more
fundamental questions concerning alternative interpretations of quantum mechanics [109],
consistent formulations of the measurement process [116, 102], and the problems which
arise when the interpretation of the Copenhagen School is applied to macroscopic sys-
tems [108, 115] are referred to the literature. In the context of this thesis the standard
quantum mechanical description following the Copenhagen interpretation is assumed to
be exact for arbitrary system sizes, even on classical length scales.

In recent years the rapid development in nanostructure technology has triggered increasing
interests in mesoscopic systems. The most remarkable progress has been achieved in the
technology of growing and processing semiconductor heterostructures. These build the ba-
sis of two-dimensional electron gases (2DEG). Using advanced lithographic techniques on
high-mobility samples it has become feasible to laterally confine the 2DEG on size scales
smaller than the phase coherence lengths. In these experiments, quantum interference

!Large means in this context large quantum numbers.



2 CHAPTER 1: INTRODUCTION

effects become relevant. For natural quantum systems like atoms, nuclei or clusters only a
few (if any) parameters can be controlled experimentally. The semiconductor nanostruc-
tures, in contrast, can be tailored to very specific needs and prepared in virtually arbitrary
shapes. This new experimental freedom led to the discovery of a variety of novel, often
surprising effects emerging from quantum interference. Among the most prominent are
weak localization [88, 94, 90], quantized conductance [99], universal conductance fluctua-
tions [93] and commensurability oscillations [83, 55, 84, 63, 41]. The rapid development
in this area and the continued interest from a large community of both theoretical and
experimental research groups promises exciting new effects within the next years.

Mesoscopic systems, however, are not only challenging for people in basic research, but
they also attract huge commercial interest. This is mainly evoked by the fact that the
structures on today’s highly integrated semiconductor devices have reached a scale where
quantum interference effects are no longer negligible. Future development of memory
components and logic devices — which includes further miniaturization — can be achieved
following two strategies: The first approach is to choose a geometric design of circuits that
strongly suppresses quantum interference effects. This approach allows the vast existing
knowledge about conventional chip design to be transferred — at least partially — to the
quantum regime. Another, more innovative strategy exploits quantum effects explicitly by
the development of a new kind of electronics based on interference. The success of both
strategies obviously relies on a detailed understanding of mesoscopic physics.

Therefore, an appropriate theoretical description of mesoscopic systems is strongly desired
for basic research as well as for commercial applications. Mesoscopic systems generically
include a large number of electrons, so that according to the Pauli principle a huge num-
ber of eigenstates of the system have to be determined in a quantum calculation. For this
reason quantum calculations are often prohibitive due to the numerical effort involved.
Much of the detailed interference information, however, is lost in the experimental realiza-
tion. This is mainly due to finite temperature and impurity effects which broaden the line
widths. Semiclassical methods provide an alternative approach. In the form applied in
this dissertation, they naturally introduce a hierarchy of energy resolutions. This makes
semiclassical approximations a well adapted tool for the description of systems which are
subject to finite temperature and impurity effects (see Sec. 3 for details on this point). The
semiclassical ansatz considerably reduces the numerical effort involved in the theoretical
description of mesoscopic systems.

Formally, semiclassical approximations are approximations of quantum mechanical equa-
tions in leading order in h. They yield asymptotically correct descriptions for states with
high quantum numbers. In practice, however, even the ground state is usually well repro-
duced. For integrable systems the basic ideas for an expansion of quantum mechanics in
orders of h were set up by Wetzel, Kramers and Brillouin [85, 51, 20] soon after the formu-
lation of wave mechanics. Completely chaotic systems, in contrast, could not be treated
with this approach. For those, it took until the late 60’s to derive an appropriate formu-
lation, the famous Gutzwiller trace formula. This Fourier-like sum has classical periodic
orbits as individual Fourier components, so that this theory is also termed periodic orbit
theory (POT). This new ansatz led to a revival of semiclassical approximations, which
attracted more and more interest. The trace formula was extended to a large variety of
systems, including systems with continuous symmetries or mixed phase space. Analogous
formulae were developed for other observables than the level density, e.g. conductance
and susceptibility.



An appealing feature of the trace formula is that it can be expressed in terms of the
classical properties of the system. It establishes as such a connection between the quantum
oscillations and the classical dynamics of the system. The POT is therefore not only a
convenient tool calculating the properties of mesoscopic systems. It additionally opens up
the possibility of an intuitive interpretation of the observed quantum interference effects
in terms of classical periodic orbits. This often underestimated feature removes the "black
box’ character of quantum calculations. An intuitive understanding of the origin of the
interference effects provides a powerful guideline for designing devices with certain desired
properties.

A central problem for all semiclassical approximations is the question of the range of
applicability. Under which conditions does the leading order in % contain the essential
physics, and when are higher-order contributions to be included? A possible approach to
this question is to consider higher-order expansions in A. There are attempts following
this ansatz [30], but they are both analytically and numerically extremely involved. The
aim of the present work is to examine higher-order A corrections without loosing the
main advantages of semiclassical approximations, namely their numerical and conceptual
simplicity. This work therefore considers some prominent corrections in higher order of A,
calculates their influence and gives an intuitive explanation of their origin and strength.
The goal is to provide rules based on easily accessible data whether certain A corrections
have to be taken into account. This knowledge is finally used to describe the experimentally
observed features of the magnetoconductance of a mesoscopic device.

This thesis is structured as follows: The first part (chapter 4) is dedicated to the ex-
amination of a model system, the circular disk. Its simplicity will allow quite detailed
investigations, since h corrections can be included analytically. The applicability to ex-
periment is limited, so that the results are only compared to the corresponding quantum
data. The second part of this work applies the semiclassical approach to experiments
on magnetoconductance. First the free electron gas is considered as a simple example
(chapter 6). Later in chapter 7 the channel with central antidots is treated exemplarily
for realistic, and thus more complicated situations. The merits and limitations of the
semiclassical approximation are considered, and higher order A effects are examined both
theoretically and in the experimental data.

Each of these two parts is preceded by a chapter providing an overview of the applied
methods. They give a summary of the relevant literature and present the techniques
developed in this thesis.

The last chapter is both a summary and an outlook, collecting the main results and
pointing out open questions which seem worth further investigations.

Please note that, apart from the short section on the integer hall effect in chapter 6 this
thesis only contains information published? in refereed journals. =~ Whenever possible,
please cite the original publications instead of this work.

2Chapter 4 on the disk billiard, including the work on the correct implementation of smoothing presented
in Sec. 3.4 and Sec. 3.2, is contained in Refs. [4, 5]. The relation between dislocations and bifurcations of
the channel with antidots of chapter 7 is submitted and available as preprint [6], the remaining part of
chapter 7 is presently prepared for publication [7].
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Chapter 2

Semiclassical approximations

Semiclassics are usually defined as approximations of the quantum mechanical equa-
tions to leading order in h. This definition is accurate, short, and self-contained —
but by no means self-explaining. This chapter first provides the necessary context by
giving a short overview of the history of semiclassical approximations before presenting
the modern form used in the subsequent chapters.
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6 CHAPTER 2: SEMICLASSICAL APPROXIMATIONS

The classification of semiclassical approximations in theories for integrable, purely chaotic
and mixed systems follows roughly the historical development of the discipline. This chap-
ter introduces the central ideas of semiclassical approximations for the different situations
following more or less this chronological order. It does not attempt, however, to review
the whole variety of different approaches developed so far, but will concentrate on key
ideas and methods relevant for the present work.

2.1 Integrable systems

The first attempts that — from a modern point of view — would be called semiclassical
date back prior to the development of wave mechanics. The empirical Bohr-Sommerfeld
quantization rule

S:fpdq:%rh-n (n € IN) (2.1)

successfully explained the spectrum of hydrogen and ionized helium. Despite huge efforts,
however, it completely failed for neutral helium. When in 1926 the wave mechanical
approach successfully explained this long-considered problem, it superseded the Bohr-
Sommerfeld scheme, and the role closed orbits play for quantization was ignored for nearly
half a century.

Soon after, an expansion of the new wave mechanical quantum theory in powers of h
was given by Wentzel, Kramers and Brillouin [85, 51, 20]. It is usually called WKB-
approzimation. The two key ideas are

1. Separate the wave function in a real amplitude and a (unit) phase factor according
to

U(r,t) = A(r, t)e B/ (2.2)
The quantum momentum of the particle
(U | —ihV| ¥ ) = VRA? —ihAVA (2.3)

is well defined and finite in the semiclassical limit A — 0. Inserting this ansatz in
the Schrodinger equation yields two equations for A and R, equivalent to the time
evolution of the real and the complex part of the wave function. For a Hamiltonian
H = p?/2m + V(r) this results in

OR (VR)? h? VA
and
A A A
0A VRV VR _ (2.5)

5 m 2m

These equations are the starting point of Madelung’s hydrodynamic picture of quan-
tum mechanics [56]. The naming was motivated by the fact that with p := A2 and
v := VR/m Eq. (2.5) takes the form of a continuity equation p + V(pv) = 0.
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2. The semiclassical approximation corresponds to the limit A — 0, which is well defined
for Egs. (2.4) and (2.5). In this limit the last term in Eq. 2.4, the so-called quantum
potential, vanishes'. This equation then takes the form of a classical Hamilton-Jacobi
equation R + H(r,VR) = 0. Using this analogy it can be shown that R is in fact
given by Hamilton’s principal function along a classical path.

For one-dimensional (or separable) systems the Hamilton-Jacobi equation can be solved in
general. The condition of the simple-valuedness of the wave function leads to quantization
conditions. These can be written down explicitly,? taking exactly the form of the Bohr-
Sommerfeld rule Eq. (2.1).

The classical turning points, however, introduce additional subtleties.® This was first
realized by Kramers [51], who derived additional phase factors pmr/2 using his connection
formulas. These factors correspond to phase shifts at reflections. In Sec. 4.3.2 this point
will be considered in some more detail. The quantization condition is modified by the
additional phases according to

S—fpdq:%rh(n—l—%) (neN). (2.6)

The additional phases from the classical turning points shift the energy spectrum. As
such, they are responsible for the quantum mechanical zero point energy.

The WKB approach can be generalized to integrable systems, i.e. systems with as many
constants of motion as degrees of freedom. In these systems the phase-space motion is
confined to a torus.* The closed paths along which the quantization in analogy to Eq. (2.6)
has to be performed are the topological invariant closed paths on this torus. In this form,
it is usually named EBK after Einstein, Brillouin and Keller [45]. Whereas for (effectively)
one-dimensional systems the classical turning points lead to additional phases, in higher
dimensions their role is taken by focusing points of trajectories in configuration space,
the so-called caustics. These correspond to foldings in phase space, where the orientation
of the configuration-space surface changes. The additional phases, which are nowadays
called Maslov indices®, only depend on the topology of the classical path.

The Maslov indices are one ingredient necessary for a successful semiclassical quantization
of the neutral helium which was missed by Heisenberg and coworkers in their attempts
prior to 1926. The second problem they did not take into account is that Helium, a
three-body problem, is not integrable, but chaotic. The role of classical orbits for the
quantization of chaotic problems remained unclear for another decade.

2.2 Chaotic systems

The methods presented above result in an energy quantization rule which depends on
individual, characteristic orbits of the system. The general hope was that the close con-

!The alternative interpretation of quantum mechanics presented by Bohm [109] preserves the quantum
potential. It solves the Hamilton-Jacobi equation including this amplitude-dependent term. A recent work
shows that this ansatz might be helpful in the interpretation of the quantum measurement process [102].

For explicit examples, see, e. g., section 2.4 of Ref. [100].

3The formal reason is that at classical turning points the quantum potential is not negligible.

4This holds for bounded systems, to be precise.

5The definition of the Maslov index is not consistent in the literature. In this work, the term is laxly
used for all additional phases in multiples of /2.
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nection between single orbits of the system and individual quantum states established for
integrable systems would also hold in the non-integrable case. This belief turned out to be
wrong, and obscured for a long time the way to a semiclassical treatment of chaotic sys-
tems. In a series of papers [36, 37, 38, 39, 40] starting in 1967, Gutzwiller established the
long-searched bridge between classical chaotic dynamics and quantum properties of the
system. This work constitutes the foundation of modern semiclassical theories. The cen-
tral result, the famous trace formula for the level density of a completely chaotic system,
has by now been re-derived using various alternative approaches. Whereas the original
work of Gutzwiller started out with the Feynman path integral, Bogomolny uses a descrip-
tion of the Schrodinger equation in terms of a semiclassical transfer operator acting on
the Poincaré map [16], and Smilansky employs a scattering approach [106]. Citanovié¢ and
coworkers [101] calculate the quantum mechanical propagator K using the fact that K it-
self solves the Schrodinger equation. The corresponding wave function is approximated by
a very nice generalization of the multidimensional WKB scheme to non-integrable systems.
Readers interested in details on these derivations are referred to the original literature or
to the recent reviews Refs. [100, 105]. Here, only the main ideas leading to the Gutzwiller
trace formula will be sketched.

2.2.1 The semiclassical Propagator

The quantum mechanical propagator K is the operator that propagates a wave function
U through time :

U(r,t) = K(r,r’;t)¥(r’,0) . (2.7)

A semiclassical approximation can be derived starting out with the Feynman path integral
expression of the propagator

K(r,r';t) = / Dr exp <%R(r,r’;t)> , (2.8)

where R is Hamilton’s principal function. [ Dr denotes an infinite-dimensional integra-
tion. It extends over all paths from 7’/ to 7 in time ¢. The integrand is rapidly oscillating,
so that most of the contributions to K cancel. This type of integrals can be well ap-
proximated using the stationary phase approximation, one of the central techniques in
semiclassics. In one dimension, it is given by

/72 6%R(7) dy = /72 6%(R0+R2(’7*’70)2+R3(’Y*70)3+...) dvy
Y Y1

1

%

/oo e (Ro+R2(7=)?) dy = e# Ro % ot sien(R2)m/4 (2.9)

If more stationary points exists, their contributions have to be summed up. The gener-
alization to more dimensions is straight forward. The stationary points of the exponent
of Eq. (2.8) correspond to the classical paths. Therefore the stationary phase approxima-
tion of K consists of the replacement of the integral over all paths from r’ to r by the
appropriately weighted classical ones.
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The resulting approximation of the propagator was — apart from the indices v, which again
stem from caustic points® already proposed by Van Vleck [86] back in 1928:

,r,l

D/2
Ky (r,r';t) = ! : Z det
ey 2mih

exp (%R(r, r'it) — w%) . (2.10)

Here T'(r,r’;t) denotes the sum over all classical paths connecting r and 7’ in time ¢, and
D is the system dimension. Eq. (2.10) is one of the key formulas to modern semiclassical
theories.

2.2.2 The semiclassical Green’s function

More convenient than the propagator is the Green’s function, its (half-sided) Fourier trans-
form with respect to time

o0

G(r,7;FE)=—— hn(l) K(r,r';t) exp (%(E - ia)t) dt . (2.11)
E— 0

Gutzwiller treated the case where all classical orbits are isolated in phase space, i.e. have
no neighbor with the same energy and action at infinitesimal distance. If additionally the
actions S of the classical trajectories are much larger than A, the integrations perpendicular
to the classical paths can be performed in stationary phase approximation. This leads to
the semiclassical approximation of the Green’s function according to

Syt Sy
Gse , I; E r'r Yr'E
r.r3 B) = (2mh (gE) ‘SET SEE

exp (F.LS(T ' B) W%) , (2.12)

where Sy, denotes the partial derivatives 925/(0k 0l). The summation extends over all
classical paths T with fixed energy F connecting 7’ and r.

The general strategy for semiclassical approximations is to find an exact expression of the
desired quantity in terms of Green’s functions. Replacing the Green’s functions by their
semiclassical approximations yields a semiclassical formula for the desired observable. This
procedure will be used in the following section to derive a semiclassical formula for the
level density. In chapter 5 the same approach will lead to a semiclassical expression for
the conductivity.

2.2.3 The semiclassical level density

The level density can be expressed in terms of Green’s function as

g(E)=—— hrn Im[Te(G(r,r, E + i€))] . (2.13)

T e—0
The classical paths from 7 to 7, i.e. the closed paths, fall into two groups: The orbits
with zero length, and finite length orbits returning to . The contribution of the zero
length orbits has to be evaluated separately, since they violate the condition S > h,

5These Morse indices slightly differ from the Maslov indices .
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which is required for the validity of the stationary phase approximation. These orbits
lead to the average density of states g(E), which alternatively can be calculated using
the familiar Thomas-Fermi relation. From now on, only the contributions of finite-length
orbits will be considered. These are responsible for the oscillatory deviations dg(F) from
the smooth part g(FE). Performing another stationary phase approximation to evaluate
the trace integral yields the famous Gutzwiller trace formula

59(F) ~ — 3 —APPO <§ _ f) . (2.14)

TS Jlde3 -m| NP2

| S —
= Apo

The summation extends over all classical periodic orbits po of the system. Tppo is the
period of the primitive orbit, i.e. the part of the orbit until it first closes in phase space.
The stability matriz M is given by the non-trivial part of the Monodromy matriz M. 1t is
related to the stability of an orbit. This quantity is explained in detail in appendix A.1.2.
The factors in front of the cos-term are usually collectively called semiclassical amplitude
Apo of an orbit. Formula Eq. (2.14) is often given in an analog form which separates the
sum over the different orbits from the sum over their repetitions. In this thesis the sum
over the repetitions should always be included in the sum over all orbits.

Please note that the trace formula for the semiclassical quantization of chaotic systems
has a completely different structure than the quantization conditions for the integrable
case. Whereas for the latter individual paths in the system are related to single quantum
states, in chaotic systems each periodic orbit contributes to all energy levels.

The Gutzwiller trace formula provided the basis for a successful semiclassical treatment
of neutral helium, which was finally accomplished in 1991 [28]. 65 years after the same
problem had set an end to the empirical quantization rules, this was a great success for the
growing semiclassical community. In the following years searching for traces of classical
orbits in quantum spectra as well as superposing classical trajectories to approximate shell
structures or even individual quantum levels have been recognized as powerful theoretical
tools.

For the purpose of this work, two generalizations of the trace formula are needed, namely
the extension to continuous symmetries and to systems with mixed phase space. These
will be presented in the following sections.

2.3 Continuous symmetries

For systems with continuous symmetries the Fourier integral Eq. (2.11) can not be eval-
uated as sketched above. A suitable adaption of the procedure has been proposed by
Strutinsky and Magner [76] and, in a more general form, by Creagh and Littlejohn [23].
The main idea of the latter generalization is a separation into a symmetry-free system
which is treated in analogy to the Gutzwiller case, and the symmetry degrees of freedom,
over which the integrations are performed exactly. The structure of the trace formula
Eq. (2.14) remains essentially unchanged by this procedure, but the definition of the am-
plitudes is different, reflecting the different structure of the underlying classical dynamics:

1 1 1 Spo . x
Sg(B) ~ —=Im |————r dt d Kpo| V26 R Tiowos | =
9(E) —tm [m (2mih)F/2 ;/po 1(g) | Kpol e n 2
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L\
= —|— T
() " m

The dimensionality of the symmetry is denoted by k. The integral over t replaces the
period of the primitive orbit Tppg in the Gutzwiller case. fpo dp(g) is the integration over

Spo - =
ZApoez%—”M] . (2.15)

po

the symmetry, where pu(g) denotes the measure of the symmetry group. The stability
term of the Gutzwiller formula is replaced by |K|'/2, where

K = Qdet(W)det(M — 1) . (2.16)

Here M is the stability matrix of the symmetry-reduced system. ) depends only on the
type of symmetry. For Abelian symmetries ) = 1, and for three-dimensional rotational
symmetry @ = J~2, where J denotes the total angular momentum. Trajectories which
are periodic in the symmetry-reduced system do not necessarily close in complete phase
space. This leads to the additional factor det(W'), where

00;

Wij = =
Y

(2.17)

The O; are the operators of the symmetry and the J; are the corresponding conserved
quantities. The topological index o is given by ¢ = u — 9, where ¢ is the number of
negative eigenvalues of W. The Maslov index p is the same as in the original Gutzwiller
formula.

This approach can deal with continuous symmetries of arbitrary dimensionality. Each
symmetry dimension corresponds to one constant of motion J;. Eq. (2.15) applies even
to integrable systems, where the number of J; equals the degrees of freedom. The trace
formula of Creagh and Littlejohn therefore provides a unified description of integrable and
chaotic systems. Although it can also be applied to systems with mixed phase space, it
cannot deal with the transition from regular motion to chaos. This problem will be dealt
with in the following section.

The power in A of the contributions of the classical periodic orbits depends on the di-
mension of the symmetry. This implies that the amplitude of the oscillating part of the
level density is larger for highly symmetric systems. In systems where different orbits
have different dimensions of symmetry, their power in A is different. The leading-order
contribution in A stems from the orbits with the highest continuous symmetry, whereas
the other orbits give rise to i corrections. In chapter 4 this point will be discussed in more
detail for the example of the disk billiard.

2.4 Mixed phase space

The semiclassical methods described above apply either to the integrable or to the com-
pletely chaotic situation. Many realistic physical systems, however, show a mixed phase-
space structure. This introduces additional complications for semiclassic approximations,
which are not completely settled by now. Ouly the ansatz of Bogomolny [16] does not
explicitly assume regular or chaotic motion, so that it can deal with mixed phase space
as well — but unfortunately only on a numerical level. The standard Gutzwiller approach
cannot cope with the transition from regular to chaotic behavior. The extensions which
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have been worked out to overcome this limitation will be introduced in this section. They
build the basis for the considerations in the following chapters.

As pointed out above, the phase-space motion of an integrable system is confined to a torus.
The periodic orbits of those systems are given by the repetitions of the elementary loops
of the Bohr-Sommerfeld quantization. There are only a few such orbits up to a given
maximum period T;,. Their number increases as a power law with T,,. In completely
chaotic” systems, however, the number of periodic orbits increases exponentially with the
period according to N oc 1/(hT,,) exp(hT},), where h is the topological entropy.

This implies that a system on its way from regular to chaotic motion creates new classical
periodic orbits. These creation points are called orbit bifurcations. The underlying mech-
anism is visualized in Fig. 2.1. There, the situation prior to the integration of Eq. (2.13)
is illustrated. The solid line gives the action in dependence of r, and the arrows indicate
the stationary points, i.e. the classical periodic paths. Varying an external parameter of

(d)

- [— -

Figure 2.1:  The classical action S(r,r; E) of a one-dimensional system in depen-
dence of an external parameter. The parabolas give the local quadratic approximations
at the stationary points.

the system changes the functional dependence of S on r. The two extrema, i.e., the two
periodic orbits in (a) approach (b), fall together (c¢) and finally disappear (d). From right
to left, these pictures illustrate the birth of two periodic orbits. This is the simplest type
of bifurcation, called tangent bifurcation.

In Gutzwiller’s derivation, the integration of Eq. (2.13) is performed in stationary phase
approximation. According to Eq. (2.9), this means to replace the integral over r by the
integrals over the parabolas approximating S(r,r; E) at the stationary points. These
second-order approximations are given by the dotted lines in Fig. 2.1. Obviously the
stationary phase approximation gets inaccurate for orbits in close vicinity. At the point
where the orbits coincide the fit parabolas have zero curvature. Since the amplitude of
the orbits is in this approximation proportional the inverse curvature of these parabolas,
the Gutzwiller approximation diverges at bifurcation points.

To overcome this problem, a local expansion to higher order in the action has been pro-
posed by de Almeida and Hannay [8] or Kus et al. [53]. Such a local approximation,
however, does not reproduce the Gutzwiller limit of well separated orbits. Retaining both
the correct asymptotic and local behavior is possible using uniform approximations, which
interpolate smoothly between the limiting cases. These have been developed most sys-
tematically by Schomerus and Sieber [72, 70, 73]. Bifurcations can be classified according
to their normal form, and the authors give explicit formulas for all generic bifurcations in
terms of the amplitudes, actions and Maslov indices of the orbits engaged. Non-generic
cases, e.g. systems with discrete symmetries, are not directly covered by these formulas
and need special care. The expressions for the two types of bifurcations relevant for this

"This holds for ergodic systems, to be precise.
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thesis are given in appendix B. Eqs. (B.7) and (B.8) apply to the tangent bifurcation, and
Eq. (B.15) to the period doubling bifurcation.

The Gutzwiller approximation only contains information about the classical phase-space
structure. At first sight, the uniform approximations of Schomerus and Sieber are ex-
pressed in dependence of the same terms. They include, however, also contributions of
ghost orbits, 1. e., analytic continuations of orbits beyond the regime where they classically
exist. This exceeds the purely classical phase space properties. In systems where the
periodic orbits are known analytically, this additional information is readily available. If
the equations of motion are solved numerically, however, this information can hardly be
accessed. This problem will be examined in more detail in chapter 7.

As can be deduced from the analytical local form of the bifurcation, the contributions of
the orbits engaged in a bifurcation are increased by a factor A0 [70]. 0 is positive; its value
depends on the type of the bifurcation. The negative exponent shows that the bifurcations
are of leading order in h. Thus, these points dominate in the semiclassical limit A/S — 0
(with S being the action of a typical periodic orbit in the system). This gives a more
formal explanation for the divergence of the standard Gutzwiller-like approximation at
these points. The problems related with bifurcations will be examined in detail for the
level density of the disk billiard in chapter 4 and for the magnetoconductance of a channel
with antidots in chapter 7.

Systems with mixed phase space may exhibit even more complicated structures in the
classical dynamics than the bifurcations discussed above. Just as bifurcations occur when
in dependence of an external parameter two (or more) orbits approach and finally coin-
cide, also two bifurcations can approach and fall together. This is called a bifurcation of
codimension 2.8 Treating those requires normal forms of even higher order in the action.
The bifurcations of codimension 2 have recently been classified by Schomerus [69, 71].
He also presented formulas for their uniform approximation. For bifurcations of higher
codimension, however, a general treatment is still lacking. The analytic complexity of
the corresponding uniform formulae would anyway make them useless for practical appli-
cations. For the context of this work, the consideration of the ’ordinary’ bifurcations of
codimension 1 will be sufficient.

With the extension to systems with continuous symmetries of Sec. 2.3 and including the
bifurcations by uniform approximations, integrable and chaotic systems as well as systems
with mixed phase space can be described semiclassically. This generalized trace formula
constitutes the main tool for the present work.

Prior to the application of this semiclassical trace formula to the disk billiard, some tech-
nical details have to be worked out. This will be done in chapter 3, where the convergence
properties of the orbit sum are examined in the necessary detail. Readers mainly interested
in physics are invited to page 27 immediately.

8This is not the exact definition of a bifurcation of codimension 2, since some “bifurcations of bifurca-
tions” can still be described in a one-dimensional parameter space. This distinction, however, is irrelevant
in the context of this work.






Chapter 3

Smoothing quantum oscillations

This chapter is devoted to the inclusion of finite temperature and impurity scatter-
ing in semiclassical approximations. The common microscopic approach is outlined,
and another, more mathematically oriented ansatz is presented. The comparison of
the two procedures allows an extension of the smoothing formalism to higher-order
contributions in h. This section provides some of the technical details which will be
important when considering h corrections in the subsequent chapters.
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The quantum mechanical level density of pure systems is given by a sum of J-functions
centered at the eigenenergies. Experiments on mesoscopic systems, however, are performed
at finite temperatures. Furthermore, the samples are not ideally clean, but incorporate
impurities (contaminations, lattice defects, etc.). These effects broaden the levels to a
finite width, thus smoothing the level density. If the line width is smaller than the mean
level spacing, the individual quantum states can still be observed. This situation will
be referred to as full quantization. For larger smoothing widths, i.e. line widths larger
that the mean level spacing, the individual levels cannot be resolved. This is called the
coarse-grained level density in the following.

Only for very peculiar systems, like the harmonic oscillator, are the levels regularly dis-
tributed in energy. The generic situation for finite fermion systems are groups of levels,
separated by gaps larger than the mean level spacing. These groups are called shells ac-
cording to the canonical example of the electronic s-, p-, d-, ... shells in atoms. This shell
structure survives even for strong broadening of the lines. It is therefore often the only
experimentally observable reminiscence of the quantum nature of a sample. Those shell
effects are a typical feature of finite fermion systems. Prominent examples include the
abundance spectra of alkali clusters [50, 26] or the stability of nuclei [117].

This chapter deals with techniques that include the effects which lead to finite line widths in
the semiclassical trace formula. The common ansatz starts with including the microscopic
effects on a quantum mechanical level and re-derives the semiclassical approximation along
the same line as calculating the original trace formula. The resulting expression differs
from the simple trace formula Eq. (2.14) by additional terms that damp the amplitudes
of the periodic orbit contributions.

In Sec. 3.2, an alternative ansatz is derived. The essential idea is to establish a formal
relation between line shapes and amplitude damping schemes. Provided the knowledge of
the correct line shape, this method can also be used for the calculation of the corresponding
amplitude damping factors.

In leading order of A, these two approaches lead of course to equivalent results. The second
technique, however, can be generalized to higher-order contributions. The idea exploited
in Sec. 3.3 is to replace the microscopic ansatz by the second approach if higher orders in
h are to be included. This will be of great importance for the examination of higher-order
contributions in A to the trace sum in the subsequent chapters.

A couple of nice side results from the inclusion of finite line widths in the trace formula
are discussed in Sec. 3.4.

3.1 The microscopic approach to smoothing

The general scheme how to include finite temperatures, impurity scattering, and related
effects on a microscopic level necessitates the re-derivation of the trace formula. After
incorporating the effect in the quantum mechanical calculation, e.g. by including weak
disorder or finite temperature by the appropriate ensemble averages, the Green’s func-
tions are replaced by their semiclassical approximations. Subsequent stationary phase
approximations lead to trace formulae similar to Eq. (2.14). This approach opens up the
possibility of a semiclassical calculation of line shapes and line widths. Note, however,
that despite recent progress [60] the quantum mechanical calculation of line shapes and
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line widths is still a mostly unsettled problem.! Since the semiclassical approximation
starts from the quantum formalism, this is equally true for for semiclassics. This work
is not intended to contribute to questions related to line shapes and relative amplitudes,
so that temperature and scattering will only be included along the simple lines outlined
below.

For the very low temperatures used in the measurement of mesoscopic semiconductor de-
vices, phonons (and their interaction with charge carriers) can be neglected. The only
relevant temperature-related effect concerning the level density stems from the Fermi dis-
tribution. For this situation, the inclusion of finite temperature on the oscillating part of
the level density is simply given by

59(u, T) = /0 A (BT = 0) (B~ ) . (3.1)

with the Fermi distribution function
1

f(Eu)_lﬁ—exp(%)

(3.2)

The derivative of the Fermi distribution is strongly peaked around the Fermi energy pu, so
that Eq. (3.1) mainly introduces an energy average over a typical width of kgT'. Performing
this integration leads to an additional temperature-dependent factor R in the trace formula

Too/Tr
R(Tpo) = — 20— . 3.3
(Tpo) sinh(Tp/17) (3:3)
Here T}, is the period of the orbit and 7 = hkpT'/m defines the thermal cutoff time 7p.
For a detailed derivation, see for example Refs. [96, 105, 100, 17].

The inclusion of impurities in semiclassical formulae is, even on an elementary level, much
more elaborate than including finite temperature. In the semiclassical picture, scattering
enters via three distinct effects:

1. The amplitudes of the periodic orbits are reduced due to the finite probability of
scattering out of the trajectory. This effect is relevant even for small impurity
concentrations.

2. New orbits which include scattering events (i.e. closed "hopping’ orbits from scat-
tering center to scattering center) occur. These orbits are for example responsible
for universal conductance fluctuations (UCF) and weak localization. This effect is
only relevant for sufficiently high concentrations of scatterers.

3. Scattering may introduce interference between otherwise coherent orbits (like in
degenerate orbit families).

In ballistic systems, the first of these effects dominates. Since scattering will only be
considered with respect to transport properties in later sections, the discussion about the
inclusion of the effects is postponed until then. Here only the main result of this analysis

!This applies especially to transport properties. So for example not even the amplitude of the Shubnikov-
de-Haas oscillations of the free 2DEG is understood theoretically [125].
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should be stated, namely that for ballistic systems the procedure is very similar to the
inclusion of finite temperatures. The effect of the scatterers can be approximated by a
damping factor [’ depending exponentially on the orbit length

F(Ly,) = e Leo/(20 (3.4)

Here ¢ is the elastic mean-free path of the system and Ly, denotes the orbit length. For
billiards, where L, = vrT}e, this damping can also be expressed in terms of the scattering
time 7, by

F(Tpo) = e Too/ ) (3.5)

where the scattering time is related to the mobility p by 74 = m*pu/e.

These two results establish a first connection between smoothing and amplitude damping,
a relation that will be examined more deeply in the following section. Please note that
the semiclassical inclusion of finite temperature and mean-free path is — just as the trace
formula itself only correct up to leading order in A. Therefore this approach is not
appropriate for the inclusion of higher-order A terms. For those contributions, a modified
smoothing scheme needs to be developed.

3.2 The relation between smoothing and amplitude
damping

Finite temperature and scattering lead to finite widths of the individual energy levels. The
effect is equivalent to a convolution of the J-functions constituting the level density with
the line shape induced by temperature and impurity effects. This section discusses from a
more mathematical point of view how this convolution integral can be implemented in the
trace formula. The main result is Eq. (3.18), which states a one-to-one relation between
line shapes and amplitude damping functions.

The general form of a trace formula is given by

SF(E)i- s

59 = Y Ar(E)e’"w vy, (3.6)
r

where I' is a one-dimensional classification of the classical periodic orbits. If there is a
generalized energy e(E), and functions G(I', E') and ¢(G), which fulfill

Sr(E) ™ .
Fh —ory = eG—a(G), (3.7)

the trace formula can be rewritten as

5g = > Agle,G)e? . (3.8)
G

For the last step it was assumed that every orbit is uniquely determined by its value of G.
By rescaling, G € IN can always be obtained; the rescaling factors should be included in
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As(e,G). The most simple situation is that Ao factorizes in terms depending only on the
generalized energy e and the classification variable G:

As(e,G) = Ag(G) Ac(e) - (3.9)
Approximating Eq. (3.8) by an integral

6g ~ A.(e) / Ag(G) e dG . (3.10)

gives (apart from normalization constants) the oscillating part of the level density dg as
the Fourier transform of Ag(G):

dg(e) = V2m Ac(e) F[Aq(G)] . (3.11)
The Fourier transform is denoted by
1 .
FlAg(G ::/A G)e'*C dG . 3.12
[Ac(G)] N a(G)e (3.12)
Using the well-known folding theorem, an arbitrary window function F(G) leads to
/ F(G) As(e,G) €S dG =~ dg(e) = f(e) . (3.13)

Here f(e) = F[F(G)] denotes the Fourier transform of F(G) and “x” stands for the
convolution integral. Therefore

SF(E)i- us
h

59" ==Y F(G)Ar(E)¢e o3~ dg(e) * f(e) (3.14)
T

where §g denotes the trace formula with damped amplitudes. This relation shows that
folding the semiclassical level density with a smoothing function f(e) is equivalent to a
multiplication of the amplitudes with a window function F(G). Unfortunately the restric-
tions of Egs. (3.7) and (3.9) are quite severe and often prevent the application of Eq. (3.14).
With two additional approximations these restrictions can be relaxed.

In the generic situation Eq. (3.9) is violated and only the common dependence of the
amplitudes on e can be separated out:

As(e,G) = Agl(e,G) Acle) . (3.15)

In this case Eq. (3.14) is still a good approximation if the variation of Ag(e,G) in e
is sufficiently slow. Denoting the characteristic width of f(e) with ~, this means that
Ac(e, G) has to be nearly constant over a region ~ in e.

If, on the other hand, there are no functions e(£) and G(F,T') that fulfill Eq. (3.7), a local
expansion of the action S in powers of e can be used:

% = S(go) + G(eg) (e —ep) + Oe — 60)2 . (3.16)
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If this approximation is valid in a region in e that is wider than the typical width + of the
smoothing function, Eq. (3.14) still holds. In the general case G is therefore given by the
first derivative of the classical action with respect to e:

_14dS

G) = 33| - (3.17)

With e = F, hG is the period T of the orbit, so that A is referred to as the quasiperiod. For
systems with constant absolute velocity along the orbit (this holds especially for billiards),
the choice e = k leads to

dS dS dE kh?
P TSR T o

where L is the geometrical orbit length.

Putting all approximations together, it was shown that damping the amplitudes in the
trace formula with a window function F(G) results in an approximation for the level
density folded with the Fourier transform of F'(G):

59" ~ f(e) * dg . (3.18)
This is the main result of this section. Eq. (3.18) holds if the conditions

S =~ S(ey) + G(ep) (e — ep) (3.19)
and

Az (e, G) = const (3.20)

are fulfilled in a region wider than the typical width v of the smoothing function. These
conditions depend mainly on the behavior of the actions and amplitudes of the orbits. In
order to match them, a well-adapted choice of the generalized energy is essential. Note that
for narrow smoothing functions (small ), the conditions are less restrictive. Therefore,
using Eq. (3.18) is often justified for a full quantization, whereas for the calculation of the
gross-shell structure the conditions Egs. (3.19) and (3.20) put tight limits on the use of
the amplitude damping ansatz — which might seem counter-intuitive at first sight. Since
every orbit is uniquely determined by its value of G, and G should be sufficiently smooth
in practical applications, the amplitude damping scheme may not depend explicitly on
the repetition number of the orbit. For most of the the applications of Eq. (3.18) in the
present work this limitation will be irrelevant. Note, however, that for the damping scheme
commonly used for the free 2DEG (compare to chapter 6), Eq. (3.18) does not apply.

A simple example might be helpful to illustrate the result. Pure billiard systems are those
where the the action along the orbits scales with the wave number: S = Ak - L, and L, the
geometric orbit length, is independent of the energy. Setting

2mE
Eq. (3.19) is fulfilled trivially. If Eq. (3.20) is also matched, then the use of a window

function F' depending on the orbit length L is equivalent to a folding of the level density
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in k. Evaluating the trace formula with a Gaussian depending on the orbit length L as
window function yields the level density folded with a Gaussian in k. This is the technique
commonly practiced for the computation of trace formulas for billiard systems. Eq. (3.18)
is somewhat more general, since it is not restricted to billiard systems nor to special
window functions.

The use of Eq. (3.18) is very convenient. Its range of validity can easily be checked using
Egs. (3.19) and (3.20). Furthermore, there is no general limitation of its applicability to
the leading order in 7. In the following section Eq. (3.18) will be modified so that it can
deal with two h corrections which occur in the disk billiard.

3.3 Smoothing beyond the leading order in %

The microscopic ansatz for the inclusion of scattering and finite temperature in the trace
formula is, as already pointed out, limited to the contributions of leading order in h.
It is therefore questionable to use this smoothing scheme for higher-order A terms like
bifurcations or grazing, since thereby the influence of the corrections on the smoothing
is neglected. The examination of the impact of higher-order A corrections thus demands
a generalized smoothing scheme which is applicable to the relevant A corrections. But
just as the inclusion of A corrections necessitates an adaption to the smoothing scheme,
so does the exclusion thereof. This comes about as omitting A corrections does not only
lead to missing terms in the trace sum, but also renders the inclusion of the smoothing
inaccurate. A way to distinguish these two effects is desired.

A complete inclusion of second leading order A effects in the microscopic calculation of
Sect. 3.1 requires the derivation of the trace formula itself to second order. This task
is, as already pointed out, both numerically and analytically so involved that it renders
the semiclassical approach useless for practical applications. This work therefore follows
a different approach, namely to replace the microscopic approach by the formulas stating
the equivalence between smoothing and amplitude damping. The latter formulae shall be
found much easier to generalize.

Along this path, the following section derives explicit amplitude damping formulas appli-
cable to two kinds of higher-order i corrections, namely bifurcations and grazing. The
ansatz is, however, not restricted to these specific cases but can be used to derive analogous
formulae for a large class of corrections.

After that, Sec. 3.3.2 will introduce the folding approach, a simple numerical scheme
cutting down the influence of higher-order A contributions on the smoothing procedure.
This method does not rely on the knowledge of the correction terms, so that it makes the
separation of the two contributions of A corrections to the trace formula discussed above
possible.

3.3.1 Including oscillating amplitudes

The general procedure to implement smoothing in trace formulae has been derived in
Sec. 3.2. The main result is restated here in a notation convenient for a generalization:
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For an energy variable e(E) and a trace formula

=T7m

> Ar(e)er ] ZAF sin[zp(e)] | (3.22)
T

the smoothing, i. e. the convolution with the line shape function f(e), can be approximated
by damping the semiclassical amplitudes with a window function F'(7T):

ZAF F(Tt) sin[zp(e)] ~ f(e)* dg . (3.23)

This approximation is only valid for slowly varying real amplitudes. The implementation
of two kinds of A corrections to the trace formula for the disk billiard, namely tangent bi-
furcations and grazing, will lead to oscillating amplitudes. This motivates a generalization
of Eq. (3.23) to oscillating real and complex amplitudes.

3.3.1.1 Oscillating real amplitudes

Any real amplitude Arp(e) can be written as
Ar(e) = Mr(e) - cos[Or(e)] , (3.24)

where O(e) is monotonous in e and M (e) is real and does not change sign. Inserting this
in Eq. (3.22) and using

sin(x) cos(0) = %[sin(m — 0O) +sin(zx + 0)], (3.25)

the two terms can individually be treated according to Eq. (3.23). This leads to the
following smoothing scheme generally applicable to oscillating real amplitudes:

5gF = ZMF [F cos(Or) sin(zp) + AF sin(Or) cos(acp)]

r
= Z Ar F sin(ar) + ZAF My sin(Or) cos(zr) , (3.26)
r r
where
+ - +_ -
P FT™+F CAF - Fr—-F ;
2 2
Fr=F@@+0) ; F- =F@' -0). (3.27)

The dashes denote the derivatives with respect to e. For slowly oscillating amplitudes
(0" <« 2’) the second term in Eq. (3.26) is negligible, whereas the first term reproduces
the previous result for non-oscillating amplitudes Eq. (3.14). The second term gives a
correction depending mainly on @', i.e. the frequency of the amplitude oscillation. As
expected, this correction is large for rapidly oscillating amplitudes.
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3.3.1.2 Special case: Tangent bifurcations

The uniform approximation of the tangent bifurcation according to Egs. (B.8) and (B.7)
leads to the Airy function as semiclassical amplitude. For this special case

8g = Ai(yr) sin(zr) (3.28)
T

one gets, using Eq. (3.26),

B — Z [F Ai(yr) sin(zr) + AFBi(yr) cos(zr)] . (3.29)
r

The frequency ©’ can be expressed as

Ai(e) Bi'(e) — Ai'(e) Bi(e) '

O'(e) = Ai(e)2 + Bi(e)?

(3.30)

These formulas are used in Sec. 4.3.3 on the treatment of the tangent bifurcations in the
disk billiard. There, the corrections to the smoothing scheme (i.e. mainly the second
term of Eq. (3.29)) will be seen to be comparable to the corrections stemming from the
uniform treatment of the bifurcations. This shows that the correct implementation of the
smoothing is vital for an examination of higher-order A contributions to the trace formula.

3.3.1.3 Oscillating complex amplitudes
For oscillating complex amplitudes, Eq. (3.26) can be applied to the real and the imaginary

part of Ar separately, so that no special treatment has to be introduced. For the special
case that the amplitude can be written as

Ar(e) = Mr(e) - exp{iOr(e)} , (3.31)
the implementation of smoothing is simply given by

5gt = Z Mr F* sin(zr + Or) . (3.32)
r

Note that now both the oscillating term and the damping via the window function F' only
depend on zr + Op. This is similar to the original formula for slowly varying amplitudes
Eq. (3.23).

3.3.1.4 Special case: Grazing

Eq. (3.32) can be used for the Fresnel integrals occurring in grazing corrections (see, e. g.,
Sec. 4.3.4). Setting

I(y) = <C(y) - %) +1i (S(y) - %) ; (3.33)
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I can be written according to Eq. (3.31). Using Eq. (3.32), some straight-forward calcu-
lations show that the smoothing of a trace formula

dg=TIm Z [C(yr) + iaS(yr)] et (3.34)

r

can be implemented by

F— + sin(x leY cos(x Mqin T ozz
30 = 32 (1 10 sine) + 080 e + T s (e o) ) 039

where a = +1 and © = /2 - 2. Note that now, in contrast to Eq. (3.32), a correction
term with an amplitude depending mainly on ©’ shows up.

3.3.2 The folding approach

The smoothing procedure presented above can only be applied if the A corrections can be
calculated explicitly. But, as already pointed out, also the neglected (and thus unknown)
corrections affect the validity of the amplitude damping ansatz for the implementation
of smoothing. This is especially clear for bifurcations: Neglecting bifurcations leads to
diverging Gutzwiller amplitudes. In the vicinity of the bifurcation condition Eq. (3.20)
of Sec. 3.2 is thus violated. The convolution of the trace sum with the line shape is
therefore no longer equivalent to the common amplitude damping. Since at bifurcations
the contribution to the trace sum is lower in powers of A, the microscopic approach also
fails, as the leading-order assumption is not fulfilled.

The simplest technique to separate the direct influence of higher-order A-terms on the trace
formula from the effects they have on the implementation of smoothing is to perform the
smoothing exactly by a numerical convolution with the appropriate line shape. With the
plausible assumption that higher-order A contributions do not influence the line shape,
this can be taken according to Sec. 3.2 as the Fourier transform of the amplitude damping
function. This numerical procedure to implement smoothing in the trace formula will be
referred to as folding approach.

Both the example of the disk billiard in chapter 4 and the magnetoconductance of the
channel with antidots in chapter 7 will show that for systems where many orbits con-
tribute, the dominating effect of bifurcations is not given by the additional terms they
introduce in the trace formula, but stems from their influence on the implementation of
smoothing. Neglecting the A-corrections of the bifurcations in trace formulae, but correctly
implementing the smoothing, will prove to be a good approximation in these cases.

3.4 Smoothing for other reasons

Even for systems where no experimental smoothing is relevant,? the implementation of a
smoothing scheme as presented above might be useful.

A first motivation is given by the mathematical properties of semiclassical trace formulae.
In the form used in this work, they exhibit non-trivial convergence properties. From a

2See for example the disk billiard in chapter 4, which is only compared to the pure quantum result.
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mathematical point of view they cannot be summed up straight-forwardly. This is already
clear from the fact that the quantum mechanical single particle level densities are sums
of §-functions. These are not functions in a mathematical sense, but distributions, which
need special treatment. For various attempts establishing proper resummation schemes of
trace formulae see Refs. [111, 101].

If one considers, on the other hand, the smoothed level density, the mathematical problems
vanish to a great extent. Calculating the trace formula without smoothing as the limit of
vanishing smoothing width allows to ignore the convergence properties of the trace sums
within the context of this work.

Another application of smoothing is to cope with the technical limits of a numerical evalu-
ation of the trace formula. Eq. (2.14) consists of a sum over all classical periodic orbits of
a system, usually infinitely many. In a numerical approach, this sum has to be truncated.
The impact of this truncation can be controlled according to Sec. 3.2 by identifying the
cut-off with the window function F(G). Eq. (3.18) thus allows a precise estimate of the
error introduced by the truncation in a numerical evaluation.

It is however often more effective to use the relation between smoothing and amplitude
damping in the other direction: Given the tolerated numerical effort, the question is how to
choose the orbits which are included in the numerical evaluation. This problem is equiva-
lent to the standard problem of Fourier spectroscopy, namely how to get the best spectrum
from a finite range of measured intensities. There, special window functions in analogy to
Sec. 3.2 are used. There is a large variety of reasonable window-functions at hand. For a
detailed discussion see Ref. [43]. There is no optimal window function for all applications,
as there is a fundamental trade-off between the width of the peaks and the intensity of
spurious sidebands. For the evaluation of the trace formula it is usually convenient to use
window functions which already include the (unavoidable) truncation. Choosing a F(QG)
which is nonzero only in a finite range automatically controls the truncation error. In this
work, a triangular window function is used.

The last reason for the implementation of a smoothing scheme like Eq. (3.18) is closely
related to the problem of the numerical evaluation of trace formulae mentioned above.
For any given window function (which may be only due to the truncation scheme imple-
mented), the expected line width and line shape can be calculated. This method provides
the basis for a very precise numerical calculation of the semiclassical single-particle en-
ergies. For details see Sec. 4.6 of Ref. [1]. In Ref. [2] this ansatz was used to prove the
identity of the EBK and the Gutzwiller result for the disk billiard numerically.






Chapter 4

The disk billiard

The disk billiard in homogeneous magnetic fields is used as a model system for semi-
classical approrimations. Its quantum mechanical level density can be calculated
analytically. Therefore, a precise comparison of the semiclassical approach to the
exact result is possible. The influence of various h-corrections to the trace formula is
examined. With the help of the trace formula’s close relation to classical dynamics it is
possible to give a simple, intuitive picture explaining all features of the level density.
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The trace formula is a relatively new technique in mesoscopic physics. The experience
with the approach is therefore rather limited. The application of this method to a simple,
well-known model system has three motivations: First, it is desirable to test the new
ansatz on a non-trivial, but well-known reference system to learn about the limitations of
the method. So the second goal considering a model system is to find out under which
circumstances specific corrections in higher order of A become relevant. Finally, in cases
where these corrections are not negligible, the challenge is to improve the semiclassical
ansatz, i.e. to include the relevant corrections in a generalized trace formula.

The semiclassical description of the disk billiard in homogeneous magnetic fields is there-
fore worked out not although the problem can be solved exactly, but because it can. The
three goals formulated above will serve as a guiding line through the following sections.

4.1 Exact quantum solution

The disk billiard in homogeneous magnetic fields is integrable. The two constants of
motion are the angular momentum and the energy. In the following, normalized energies
F in units of

h2

Fy= ——
0= 9mR?

(4.1)

and normalized magnetic fields B in units of h/eR? will be used. With the disk radius

R and the wavenumber k the normalized energy is given by \/E = kR. The classical
cyclotron radius is given by R. = hk/eB, and in normalized units by R./R = kR/ B. The
exact solution for the eigenenergies was presented by Geerinckx [31] and, using a different
approach, by Klama et al. [49]:

~ ~ 14+ 1
E, =2B- <anl+—2| | +§> ) (4'2)

where the a,,; are the zeros of the confluent hypergeometric function 1 Fy

B
1F1 (—Oénl;l—Fm;E) =0. (43)

Here n > 0 denotes the radial and [ the angular-momentum quantum number. For B =0
the eigenvalue equation simplifies to the well-known result Enl = (jn1)?, where j,; are the
zeros of the Bessel functions Jj(j,;) = 0. For the details of the numerical evaluation, I
refer to my Diploma thesis [1]. Fig. 4.1 shows the dependence of the eigenvalues Enl on
B. One clearly sees how with increasing magnetic field the different states condense into
the Landau levels (dashed lines).

4.2 The leading order in h: Standard semiclassics

The standard Gutzwiller approach [36, 37, 38, 39, 40] is limited to orbits which are isolated
in phase space. Therefore it cannot be applied to the disk with its continuous rotational
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Figure 4.1: The quantum-mechanical eigenenergies of the circular billiard in depen-

dence of the magnetic field. The dashed lines correspond to the four lowest Landau

levels.

symmetry. Deriving a trace formula requires the extensions of Strutinisky and Magner [76]
or Creagh and Littlejohn [23]. This has been done for the zero-field case by Reimann et
al. [2] and, independently, by Tatievski et al. [79]. Equivalent results have been obtained by
Balian and Bloch [11]. Von Oppen [123] followed the approach of Berry and Tabor [13],
which starts from the EBK quantization of the system [46]. Via Poisson resummation
and subsequent saddle point approximations he derived a trace formula equivalent to the
modified Gutzwiller approach. This result shows that EBK and the modified Gutzwiller
approximation are identical in the leading order of h. Since the intermediate steps of the
calculation include saddle-point approximations, the identity does not necessarily hold
beyond the leading order. In a previous work I was, however, able to show numerically

with high accuracy that the Gutzwiller-like trace formula reproduces exactly! the single-

particle energies of the EBK quantization. For details see Refs. [2, 1].

For weak magnetic fields, the circular billiard was treated using a perturbative approach

by Bogachek and Gogadze [15], Ullmo et al. [82] and Reimann et al. [62].

4.2.1 Trace formula for arbitrarily strong fields

The generalization of the Gutzwiller trace formula to systems with continuous symmetries
by Creagh and Littlejohn is a convenient starting point for the semiclassical description
For the
application of this generalized trace formula, the periodic orbits have to be classified and
their actions, amplitudes, and Maslov indices have to be calculated. This was the topic of
my diploma thesis [1]. Since these results provide the basis for the subsequent calculations,

of the level density of a circular billiard in arbitrarily strong magnetic fields.

they will be shortly reviewed in the following.

!This has to be interpreted as a very fortunate case, comparable to the harmonic oscillator. There all

h corrections vanish, and the semiclassical approximation is therefore exact [18].
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4.2.1.1 Classification of the periodic orbits

The classification of the periodic orbits in the system is straightforward. In zero field, the
periodic orbits (PO) of a circular billiard are equivalent to those in a three-dimensional
spherical cavity. The complete classification of those has already been given by Balian
and Bloch [11]. The only difference to the three-dimensional case is that the orbits in
the disk billiard only have a one-dimensional degeneracy, corresponding to the rotational
symmetry of the system. Each family of degenerate orbits with a given action can be
represented by a regular polygon. The first few polygons are shown in Fig. 4.2. These

Figure 4.2: The
classical periodic or-
" bits of the circu-
lar billiard in zero

field are the requ-
(21) (31) (41 (5.1) lar polygons. They

can be classified with

(v,w), where v is
the number of cor-
***  ners and w indicates
how often the trajec-

tory winds around

(4.2) 5.2 (6,2) (7,2) the center.

orbit families are classified by 8 = (v, w), where v denotes the number of corners (vertices),
and w is the winding number, i.e., it counts how often an orbit winds around the center
of the disk. With v > 2w > 2 (v,w € IN), all families of POs of the system in the absence
of a magnetic field are uniquely described by f = (v, w). Because of the time-reversal
symmetry, all orbits except the diameter (v = 2w) have an additional discrete two-fold
degeneracy, which has to be accounted for in the trace formula.

Switching on the magnetic field causes the classical trajectories to bend, the direction of
the curvature depending on the direction of motion with respect to the magnetic field.
This entails a breaking of time-reversal symmetry. For weak fields, the orbits can still be
classified by £ if an additional index (+£) is introduced. This situation is shown in the
upper row of diagrams in Fig. 4.3 for the orbit 5 = (4,1). Up to a field strength where the

Figure 4.3: A magnetic
field breaks the time-reversal
symmetry, so that the or-
bits are no longer indepen-
dent of the direction of mo-
tion. Introducing an addi-
tional indexr £, the orbits
can be classified by (v, w)*,
both in weak (R. > R) and
in strong (R. < R) fields.
For strong fields an addi-
tional family of orbits oc-
curs.  These are the cy-
clotron orbits, which do not
touch the boundary.
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classical cyclotron radius R. equals the disk radius R, henceforth referred to as the weak-
field regime, the orbits do not change their topology and the classification 8+ holds. For
the strong-field regime with B> kR, the structure of the POs is different. This situation
is shown in the second row of diagrams in Fig. 4.3. The B~ orbits vary their shapes
continuously over the point R. = R, but the topologies of the 3% orbits change abruptly.
However, since there is a one-to-one correspondence between orbits for R. 2 R and for
R. S R, B7 still gives a complete classification of all bouncing orbits, i.e., of orbits that
are reflected at the boundary. For R, < R, there are additional cyclotron orbits which do
not touch the boundary at all. They have to be included additionally in the sum over all
orbits in the trace formula. At field strengths where R. < R-sin(rw/v), the (v,w)* orbits
no longer exist (see Fig. 4.4). They vanish pairwise in a tangent bifurcations. This imposes

Figure 4.4: (vw)t
At a magnetic field
strength where R, = !

Rsin(r  w/v), the
£

orbits (v, w)* wvan- < (v,w)~

ish pairwise in tan-

gent bifurcations. R¢> R sin(Tiw/v) R¢:= R sin(miw/v) R, < R sin(riw/v)

an additional restriction on the sum over (v,w). Including this finally yields a complete
classification of all periodic orbits in the circular billiard at arbitrary field strengths.

4.2.1.2 The bouncing orbits

The action of a closed orbit in a magnetic field can be written as the sum of the kinetic
part and the magnetic flux enclosed by the orbit

Sg = /pdq = hkLg — eBFjp . (4.4)

The enclosed areas Fj of the periodic orbits discussed above (correctly counting those
areas that are enclosed several times, cf. Fig. 4.5) as well as their geometrical lengths Lg

Figure 4.5: Calculat-
ing the magnetic flux
enclosed by an or-
bit, the multiple en-
closed areas (darker
gray) have to be cor-

rectly accounted for. (3, 1,n) + (5,2,n) + (7,3, n) *

can be calculated by elementary geometry. In terms of the geometrical quantities R., R, ~y
and © explained in Fig. 4.6 they are given by

Sg(E) = wvhkR.n, (4.5)
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. 2 .
N+ Sll’122’}/ - (Rﬁ) % for (,6+7RC > R)

o

. 2 .
n = ™=y = —Sm227 + (Rﬁ) —Sm226 for (8%, R. < R)

. 2 .
v + sm227 + (Rﬁ) Sm220 for (/6_)

According to the trace formula Eq. (2.15),
the orbit amplitudes include an integral
over the symmetry group. For the ro-
tational U(1) symmetry of the disk this
integral just gives 2w /v. The remaining
factors in the amplitude are the period of
the orbit L/hk, and the Jacobian result-
ing from the symmetry reduction dL/d¥,
where ¥ = —2n0. All these quantities
can be calculated analytically, resulting
in

Ag = — — o\ 5 &

B {7r7 for (7, R. < R)
& =

~y otherwise ,

(4.6)

Figure 4.6:  The actions and amplitudes of the
classical periodical orbits can be expressed in terms
of the geometrical quantities shown in this figure.

where c¢,d, and s are the geometrical
lengths sketched in Fig. 4.6. The depen-
dence of these geometrical quantities on the classification parameter 8% and the cyclotron
radius R, is given by

e =

w
v

v = arcsin (Rﬁ sin (~)> ,

C

v — © + 7/2 for (B",R.> R)

p = -y + © + 7/2 for (B",R. < R)
v + © — w/2 for (7) ,
¢ = Rcosp,

s = \/RCQ—RZSiDQQ,

J = |s — Rcos®| for B
- s+ Rcos® for 7.

4.2.1.3 Cyclotron orbits

As already mentioned above, a new class of orbits occurs for B > kR. These are the
cyclotron orbits, which do not touch the boundary at all (see Fig. 4.3). They form trans-
lationally degenerate families, whereas the bouncing orbits (v,w)* considered above are
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degenerate with respect to rotations. For the translational case, the symmetry reduc-
tion can be performed directly, without need for the general procedure of Creagh and
Littlejohn. Therefore, the the phase-space coordinates are transformed according to

1 ( eB )
My i= ——— [ pe + —v | , I, :=my++/|eB| z,
V|eB] 2
1 eB
My = —— - —2x |, I, :=m, —/|eBl| y . 4.8
Yy \/m (py 9 ) Yy x | |y ( )

II,; and II, are canonically conjugate variables, since
[I,,1I,] = ih. The same holds for m, and m,.
Apart from the factor \/|eB|, (7, m,) are the co-
ordinates of the motion relative to the center of gy-

ration (II,II,), as illustrated in Fig. 4.7. In these X,Y)
coordinates the Hamiltonian reads Y X,Y)
eB 9

As expected, H does not depend on the coordinates
of the center of gyration. Because the relative and

the center-of-gyration coordinates commute, i.e., Figure 4.7:  The motion of a charged

[y, 7] = [y, my] = [I, 7] = [, m] = 0, the particle in a homogeneous magnetic
degeneracy of a cyclotron orbit is proportional to field can be expressed in the coordi-
the phase-space volume V accessible for (I, IL,). nates of the relative motion (Z,y) =
This can be directly read off Fig. 4.7 (shaded area). |eB| */*(~my,m;) and the coordinates

The degeneracy is therefore given by gBT’E /20(61_71”67” I_Tf ) gyrgjganéfn(;lZ)m;
zy, —tly)-

- 9 is independent of (Il;,11,): all orbits
N — 14 _ E 1— & (4.10) with the center (X,Y) in the gray
2mh 2 R ' ' shaded area are degenerate.

The Hamiltonian Eq. (4.9) is identical to that of a one-dimensional harmonic oscillator.
Using its analytical trace formula,? the contribution of the cyclotron orbits to the oscil-
lating part of the level density can be written as

1 R.\?
c 1 < E TR, — nm) . 4.11
dg 2E0< R) : 1cos(nk R, —nm) (4.11)

Here n is the winding number around the center of gyration. The frequency is again
determined by the classical action along the orbit, which in this case is

S=n-hk-nR,.. (4.12)

Note that here exactly half of the kinetic contribution to the action is canceled by the flux
term.

2The one dimensional harmonic oscillator is one of the few cases that can be treated exactly within
standard POT [18].



34 CHAPTER 4: THE DISK BILLIARD

4.2.1.4 Additional phases

The additional phases o in the trace formula (2.15) are discussed in Sec. 4.3.2.1. There,
the Maslov index p is found to be p = 3v for bouncing orbits and p = 2 for cyclotron
orbits. The additional phase of ¢ - 7/2 stemming from the symmetry reduction is given by

5 { 0 for (BT, R. < R) (4.13)

1 otherwise

Now for all quantities of the trace formula analytical expressions have been derived. Insert-
ing them in Eq. (2.15), the semiclassical level density for the disk billiard in homogeneous
magnetic fields can be evaluated.

4.2.2 Numerical evaluation

The infinite trace sum Eq. 2.15 has to be truncated in a numerical evaluation. The
implications of this truncation have been discussed in Sec. 3.4. To ensure the convergence
of the sum and the comparability with the quantum results as well as to control the
truncation errors, the considerations of Sec. 3.2 will now be applied to the trace formula
of the disk billiard.

As discussed on page 20, the natural choice for the generalized energy in billiard systems
is k. According to Eq. (3.21) the quasiperiod is then given by the geometrical orbit length

2r — 2y for (8T,R. < R)

2~ otherwise (4.14)

L:ch-{

Note that for weak fields (R. > R) L is independent of the direction of motion +.

To compute the trace formula, an appropriate window function F(L) has to be selected.
For this choice two criteria are relevant: First, F'(L) should be nonzero only in a finite
range of L, so that many terms in the trace formula are eliminated and the numerical
evaluation is simplified. Second, the window function should have an analytical Fourier
transform to enable an easy and accurate comparison with the quantum results. Either of
these conditions is met by the usual Gaussian smoothing, where the orbits are suppressed
with increasing length L according to exp{—(L/Lg)?}. In this work a triangular window is
used instead, which matches both demands. In order to make the results comparable with
the usual Gaussian smoothing, the window function is characterized with a parameter 7.
It corresponds to the variance of a Gaussian smoothing exp{—1/2(k/7)?} with the same
half-width.

Since the trace formula should be evaluated via Eq. (3.14), the compliance of conditions
Egs. (3.19) and (3.20) has to be checked. These depend on the behavior of the amplitudes
which are plotted in Fig. 4.18. As already discussed, the orbit amplitudes diverge at the
bifurcations, so that Eq. (3.20) is violated at these points. This problem will be treated
together with the inclusion of the bifurcations in Sec. 4.3.3. Except in the vicinity of
bifurcations, the conditions (3.19) and (3.20) are fulfilled, so that Eq. (3.14) is applicable.
For the cyclotron orbits discussed in Sec. 4.2.1.3, G = n-2rR. and A = (2Ey) (1-R./R)?.
This amplitude is slowly varying in the whole energy range. For the cyclotron orbits,
approximation (3.18) is therefore justified for all £/ and B.

Putting everything together, this establishes a numerical scheme for the evaluation of the
semiclassical trace formula for the circular billiard.
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4.2.3 Results of the trace formula

The results of the trace formula for the disk billiard in homogeneous magnetic fields will
only be discussed insofar as they are relevant for the present work. Further details can be
found in my Diploma thesis [1] or in Ref. [4].

For zero field, the trace formula leads to an exact quantization at the EBK eigenvalues [2].
In the weak-field limit the trace formula can be approximated by replacing the amplitudes
of Eq. (4.6) by their asymptotic values for B — 0 and expanding the actions of Eq. (4.5)
up to first order in B. This reproduces, as expected, the perturbative results of Bogachek
et al. [15] and Reimann et al. [62].

The result for the shell structure (i.e. the coarse-grained level density) in comparison to
the exact quantum mechanical result is displayed in Fig. 4.8. For R. > R, the agreement

59 07/ G max—

o A O AEM O AN O M O

1
D

5 10 15 20 25 30 3B R
Figure 4.8:  The semiclassical level density of the disk billiard (solid) compared to
the equivalently smoothed quantum-mechanical result (dashed). The smoothing width
18 ¥ = 0.35. Gray lines and the arrows indicate the positions of the first four Landau

levels. In weak fields (R, > R) the semiclassical result is in excellent agreement with
the exact solution, for strong fields (R. < R) the agreement is not satisfactory.

with the exact quantum mechanical result is excellent. In the strong-field regime R S
R, however, the agreement is not satisfactory. The positions of the Landau levels are
reproduced, but their degeneracy is overestimated in the semiclassical approximation. In
the extreme field limit (R. < R) the Landau states dominate the level density. In this
regime the cyclotron orbits dominate, since their degeneracy prefactor Eq. (4.10) grows
linearly in B. As shown in Sec. 4.2.1.3, the cyclotron orbits can be analytically transformed
to a harmonic oscillator. Thus, the semiclassical description of these orbits is exact. For
extremely strong fields, the trace formula is therefore again a good approximation.

The same results have also been obtained for the full quantization of the system [1, 4].
To summarize, both the shell structure and the full quantization, in weak as well as in
extremely strong fields, are well approximated by the semiclassical method. The regime
R. < R, however, is poorly reproduced by the trace formula.
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4.3 Beyond the leading order: % corrections

4.3.1 The inherent h problem in the disk billiard

As explained in the previous section, a new class of periodic orbits appears in strong
magnetic fields. These are the cyclotron orbits, which exist only for B > kR. Whereas
the bouncing orbits have a one-dimensional rotational symmetry, the cyclotron orbits are
two-dimensionally translationally degenerate. The application of Creagh’s trace formula
Eq. (2.15) leads to contributions in K32 stemming from the bouncing orbits. The cy-
clotron orbits, however, have a prefactor =2 . Even though the trace formula is derived
as the leading-order contribution in A, its application to the disk billiard results in terms
of different orders in h.

The inherent A problem of the disk billiard is that these different powers in h are indeed
necessary to describe the level density of the system. The leading order in h is given
by the contributions of the cyclotron orbits. These describe the Landau levels correctly,
which dominate the level density in the extreme strong field limit. At weak fields, however,
R. > R and the trace formula only consists of the bouncing orbits.

In the two limits where one order in A is dominant, i.e. the extreme and the weak field
limit, the trace formula was seen to be a good approximation. In the strong field regime
(R. S R) different powers in % become relevant, and the semiclassical description is not
satisfactory (cf. Fig. 4.8). This observation is surprising, since the transition between
the limiting cases is mainly governed by the smoothly varying degeneracy prefactor of the
cyclotron orbits. The origin of the discrepancy between the semiclassical and the quantum
result in the strong field regime needs further investigation.

Formally, the bouncing orbits give rise to an h correction in this regime but, as we have
just seen, they cannot be neglected. This naturally rises the question whether other A
corrections are also relevant for the semiclassical description of this system. The follow-
ing sections select various A corrections from physical and mathematical arguments and
examine their influence. These investigations will finally show that all relevant effects can
be described in a simple, intuitive picture. More mathematically motivated corrections
will be of negligible influence. This is very convenient from an applicant’s point of view,
since the necessary modifications to the trace formula remain simple, and more involved A
corrections are irrelevant for practical applications. A theorist, however, might be disap-
pointed by the fact that all the elaborate lengthy formulas have so little influence in the
end.

4.3.2 Reflection phases

The calculation of corrections to the Maslov index is motivated by two observations: First,
a close look at the shell structure in Fig. 4.8 as well as at the corresponding full quanti-
zation data shows that the semiclassical approximation overestimates the degeneracy of
the Landau levels, and completely misses the levels slightly higher in energy. A simple
hand-waving argument links this behavior to a boundary effect: Quantum mechanically, a
particle moving on a cyclotron orbit will feel the boundary even if classically not touching
it. Particles on cyclotron orbits close to the boundary thus feel an additional confinement.
This restriction to a smaller volume will lead to a higher energy. In this picture, not all
the cyclotron orbits are degenerate. The orbits close to the boundary no longer have the
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energy of the Landau level, but a slightly higher one. This corrects the observed defects
of the semiclassical approximation. The boundary properties enter the standard trace
formula only via the Maslov index, so that a correction of u is indicated.

The second observation motivating a closer examination of the Maslov index can be illus-
trated with the diameter orbit. It exists only in the weak-field regime and develops into
a cyclotron orbit at R. = R. The action and the period change smoothly over this point,
but the Maslov index does not: It is 4 for the bouncing, and 2 for the cyclotron orbit. A
correction to the Maslov index should remove this spurious jump.

In my Diploma thesis [1], I suggested an h-correction to the Maslov index, i. e. replacing it
with a more sophisticated quantity explicitly depending on A. This section will summarize
the ansatz together with the main results.

4.3.2.1 The Maslov index

The origin of the Maslov index can most easily be understood in the one-dimensional
case. As presented in more detail in Sec. 2.1, the semiclassical approach approximates the
wave functions by plane waves with the local wave number k(z) = \/2m[E — V(z)]. This
approximation obviously breaks down at the classical turning points where E = V' (z), so
that the wavelength diverges. Expanding the wave function around the classical turning
points and matching them to the plane-wave solutions far from the turning points leads
to additional phases in the semiclassical quantization. In the limit 2~ — 0 these are
independent of the detailed shape of the potential. Each reflection at a soft® turning point
gives a phase of —7/2, whereas each reflection at an infinitely steep wall gives a phase of
—m. These phases (in units of 7/2) are the Maslov indices.

In the case of the disk billiard, the Maslov index can be obtained by counting the classical
turning points of the one-dimensional effective potential in the radial variable r. For
skipping orbits, the Maslov index per bounce is 3, including one soft reflection at the
centrifugal barrier and one hard-wall reflection. For the cyclotron orbits, the effective
potential is a one-dimensional harmonic oscillator (see Sec. 4.2.1.3) with two soft turning
points, and thus their Maslov index per period is 2. In higher dimensions, the Maslov index
is less accessible to intuition. It can be described as a topological index characteristic for
an orbit. Its calculation for two-dimensional systems is described in appendix A.2.3. For
higher dimensions see e. g. Refs. [22, 66].

4.3.2.2 Reflection phases

For finite & the additional phases stemming from classical turning points depend on the
shape of the potential. This can be easily understood considering a cyclotron orbit at a
distance zy, from the billiard boundary. Neglecting the curvature of the boundary (which
corresponds to the strong-field limit), the motion in the presence of the wall can be reduced
to an effective 1D motion just as presented in Sec. 4.2.1.3. This is shown in Fig. 4.9. The
upper row of diagrams shows the 2D motion, the lower row gives the reduction to the
one-dimensional motion in an effective potential. Figure 4.9 (a) shows the unbounded
case, in (b) the orbit is near the boundary, and (c, d) illustrate skipping orbits.

3In this context “soft” means that the slopes of the potential at the classical turning points are finite.
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Figure 4.9:  The cyclotron orbit is equivalent to the motion in a one-dimensional
harmonic oscillator (a). Neglecting its curvature, the billiard boundary can be imple-
mented in the effective one-dimensional motion (b)-(d).

A particle in the potential sketched in Fig. 4.9(b) is classically not influenced by the
additional wall, since it will never touch it. Quantum mechanically, however, the wave
function enters the classically forbidden region and thus feels the boundary even for x,, >
R.. This leads to a smooth transition of the quantum-mechanical reflection phase ¢gr
over x = R.. The semiclassical Maslov phase, in contrast, is discontinuous at this
point. As explained in Sec. 4.3.2.1 above, it is —x for zy, > R, and —3/27 for zy, <
R.. The quantum mechanical boundary effects can be implemented in the semiclassical
trace formula by replacing pm/2 by the reflection phase g of the corresponding one-
dimensional motion. This smooth version of the Maslov phase will also remove the former
clear separation between cyclotron orbits and skipping orbits. These two limiting cases
are now continuously linked, with ¢r ranging between —7 and —37/2. We will refer to
the orbits in the transition region, which are close to the boundary within &, as to the
grazing orbits.

In this approximation the calculation of the reflection phases is reduced to the problem of
the one-dimensional harmonic oscillator in an additional square-well potential. The ap-
proach chosen in my Diploma thesis [1] was to integrate the quantum-mechanical problem
numerically and calculate the reflection phases ¢r from the solutions. Alternatively to
this numerical approach, an analytical approximation of the reflection phase is possible.
For a linear potential, the Schrodinger equation can be solved analytically. Matching the
solutions with the boundary condition yields an expression of the reflection phases in terms
of Airy functions:

b

-2 (% + arctan [Bz()o]) for X >0

(
Aq(

—9 (% 4+ arctan |:Bi(:§§:| - %\X|2/3) for X < 0. (4.15)

YR =

Expanding the potential at the turning point to linear order, these reflection phases can
be used for arbitrary potential shapes. In this approximation, X is given by

X—(g/w¢ﬁ_76ﬂwfm, (4.16)

2 Jr
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with the classical turning point 7" and the position of the hard wall W. For the harmonic
oscillator considered above, one finds explicitly

(2/3)

3VE Tw /T2 — 1 — arcosh(Zy,) for |7y| > 1

VE( aRT ) )

—2VE (T — |Zw| /72 — 1 — arcsin(|Zy]) for |Zy| < 1,
SVE (5 -l lvR T )

where Ty, := zy/R.. An equivalent approach to the reflection phase was used in a different
context by Isihara and Ebina [44].

X = (4.17)

The corrections to the Maslov
index obtained from the nu-
merical approach and the
analytic approximation of
the reflection phase are
equivalent within the con-
text of this work. Fig. 4.10 400
shows the result of the =0
quantum mechanical cal-
culation for the reflection
phase ¢r. As expected, the
transition from —m at xy >
R. to —=3/2m at zw < R,

is smooth. The transition Figure 4.10:  The reflection phase pr in dependence of the dis-
gets sharper if (kR)f/B M- ance of the center of gyration from the boundary xy. The tran-
creases. For (kR)Q/ B — 00, sition from zw < R¢ to xw > R. is continuous and gets sharper
which corresponds to the for increasing (kR)?/B. In the limit (kR)?/B — oo, which corre-
semiclassical limit A — 0, sponds to the semiclassical limit h — 0, the Maslov phase (thick
the standard Maslov phase line) is recovered.

(thick line) is reproduced. Fig. 4.10 shows that quantum corrections have the greatest
influence on the grazing orbits (z, ~ R.) and on orbits with x,, 2 —R.. The latter
are known as the whispering gallery orbits, as they move in a narrow region along the
boundary.

4.3.2.3 Comparison to the quantum-mechanical result

Fig. 4.11 depicts the semiclassical shell structure calculated with reflection phases in the
whole range from zero field to full Landau quantization (solid). The comparison with the
exact quantum result (dashed) shows that the semiclassical approximation is now valid
for arbitrarily strong fields, in contrast to the standard trace formula result displayed in
Fig. 4.8. Especially the degeneracies of the Landau levels are now reproduced correctly.
This shows that the replacement of the Maslov index by the reflection phase is an important
correction in the intermediate strong field regime. The reflection phase explicitly depends
on h, so that the inclusion of this term formally corresponds to a correction in higher than
leading order in h.

Some bifurcations of important orbits are marked with vertical lines in Fig. 4.11. The
quality of the semiclassical approximation is excellent even at these points, where the
semiclassical trace formula is expected to diverge. This apparent contradiction will be
explained in the following section. There, the bifurcations will be included in the trace
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formula, and the influence of the corresponding h correction will be analyzed for the
various field regimes.
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Figure 4.11: The semiclassical coarse-grained (7 =~ 0.35) level density of the disk billiard
with corrected reflection phases (solid) compared to the equivalently smoothed quantum-
mechanical result (dashed). The agreement is excellent in the whole range of energies,
disk radii, and magnetic fields. The vertical lines indicate the bifurcation points of the
most important orbits. The shaded regions are enlarged in the figures below. The thick
gray lines correspond to the interpretation of the level density as given in Sec. 4.4.
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4.3.3 Bifurcations

In the disk billiard, the orbits (v, w)® vanish pairwise with increasing magnetic field (or
decreasing energy) in tangent bifurcations (see Fig. 4.4). This type of bifurcation was
already introduced in Sec. 2.4. Due to the continuous symmetry of the disk billiard, the
integration considered there has to be performed over the angular momentum L instead
of r, but apart from that the schematic behavior of Fig. 2.1 is directly recovered. Fig. 4.12
shows the situation for the triangular* orbits. The stationary points of S(L) in the first
row correspond to the periodic orbits plotted below. Fig. 4.12(A) shows the generic

(A) (B) (©

I—min I-max I-min Lmax I—min I-max

Figure 4.12: h corrections to the stationary phase approzimation of the trace integral
of the level density. Upper row: Classical action S in dependence of the angular
momentum L (solid). Dashed lines give the quadratic approximations at the stationary
points (arrows). Lower row: Classical orbits corresponding to the stationary points
of S(L). (A) Generic Gutzwiller case, (B) close to a bifurcation, (C) close to the
integration limit: creeping orbits.

situation, where the stationary points are well separated from each other and from the
integration limits. There, the stationary phase approximation according to Eq. (2.9) is
well justified. Near a bifurcation, the stationary points are in close proximity. This is
shown in Fig. 4.12(B). The situation corresponds exactly to the one discussed in Sec. 2.4.
There is was outlined that uniform approximations are the appropriate tool to overcome
the spurious divergencies of the standard Gutzwiller approach at the bifurcation points.

Applying the uniform approximation for tangent bifurcations Eqs. (B.7, B.8) to the disk
billiard, a modified trace formula which incorporates all bifurcations can be derived. This
trace formula reads

5q = % S DplaAi(n) cos(x) + bAY (5) sin(x)] - (4.18)
B=(v,w)

“Note that S(L) = S(L, 3), i.e. the functional dependence of S on L, depends on the type of orbit.
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For the reasons mentioned in Sec. 3.4, again the smoothed level density is considered
in the numerical evaluation. The implementation of the smoothing in the trace formula
requires special care, as the amplitude factors of Eq. (4.18) are oscillating functions. The
procedure how to deal with this complication is discussed in Sec. 3.3.1. The result of the
uniform approximation, together with the influence of the smoothing scheme, is examined
in Fig. 4.13. There the contributions of the 8 = (4,1)* orbits to the oscillating part of

32 33 34
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Figure 4.13:  The influence of the smoothing scheme on the uniform approximation.
All data correspond to the contributions of the 3 = (4,1)F orbits to the semiclassical
level density for B = 50 and ¥ & 0.21. The dashed lines in (A-C) give the uniform
result together with the exact implementation of smoothing according to Sec. 3.3.1.
The solid lines show (A) Guizwiller result; (B) naive implementation of the smoothing,
assuming slowly varying amplitudes; (C) improved ansatz as explained in the main

text.

the level density are plotted for B = 50 and 4 ~ 0.21. In Fig. 4.13(A), the solid line gives
the result of the Gutzwiller trace formula, with smoothing according to Eq. (3.14). The
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characteristic divergence at the bifurcation point can clearly be seen. For B < 35.36 the
(4,1)* orbits classically do no longer exist, so that their contribution to the Gutzwiller
trace formula is zero. The uniform approximation Eq. (4.18) with smoothing according to
Eq. (3.29) is illustrated by the dashed lines in (A-C). This ansatz interpolates smoothly
over the bifurcation. Far on the real side of the bifurcation, i.e. the side where the orbits
classically exist, the uniform approximation reproduces, as expected, the Gutzwiller result.
On the complez side, the uniform approximation includes contributions of ghost orbits.
These are damped exponentially. The detailed discussion of the effects of the bifurcations
on the level density is postponed until the influence of the smoothing scheme on the
uniform result is examined.

In (B), the correct smoothing scheme (dashed) is compared to the naive application
of Eq. (3.14). This ansatz corresponds to the approximation of the Airy functions in
Eq. (4.18) as constants. Except for the vicinity of the bifurcation, this approach fails
completely. This is easily understood looking at the formula for the uniform treatment of
the tangent bifurcation Eqgs. (B.7, B.8). Applying the smoothing scheme of Eq. (3.14) to
this expression, the damping depends on the average 9S/0F of the two orbits. This does
not converge to the correct limit far from the bifurcation, which is given by the Gutzwiller
expression. There the damping is given in terms of the individual orbit frequencies. The
correct asymptotic behavior on the real side can be imposed by interpreting the damping
terms as parts of the semiclassical amplitudes, thus including them in the sum and dif-
ference terms of the amplitudes in Eqgs. (B.7, B.8). This approach, however, is restricted
to the real side, since on the complex side the actions are imaginary. This results in com-
plex arguments for the window function, which is not covered by the smoothing scheme
of Sec. 3.2. In Fig. 4.13(C), this modified smoothing scheme (solid) is compared with
the exact implementation according to Eq. (3.29) (dashed). On the real side this simple
approach leads to acceptable results. The difference to the exact inclusion of smoothing
on the complex side of the bifurcation, however, is not negligible.

In conclusion, Fig. 4.13 shows that the correct implementation of smoothing is crucial
when considering bifurcations in the trace formula. It leads to significant corrections to
the standard schemes.

Now as the effect of the smoothing scheme has been examined, the influence of the bi-
furcations on the level density should be considered. In Fig. 4.14(A), once again the
contribution of the (4,1)% orbits to the level density with (dashed) and without (solid)
uniform approximation is plotted. The large mismatch confirms that neglecting the bi-
furcation results in a wrong contribution of a single orbit to the trace formula. The total
level density, however, is not much affected. This is shown in (B, D) for two smoothing
widths. Broad smoothing leads to a small number of orbits which contribute to the trace
sum. Since the bifurcation points of these orbits do not coincide, the other orbits partially
mask the effect of a bifurcation (B). For narrow smoothing (D) more orbits contribute to
the trace formula, and the net effect of the bifurcations further decreases. Even the widths
of the poles at the divergencies get less wide when more orbits are included. This effect
is due to higher repetitions of the bifurcating orbits. These bifurcate at the same points
as the primitive orbits. Fig. 4.14 indicates that the effects of the different bifurcations
compensate to a great extent.

Although a finer resolution leads to a larger number of bifurcations included in the trace
formula (illustrated by vertical lines in Fig. 4.14(C)), their net effect decreases. The shell
structure is therefore more affected by the A corrections than the full quantization data.
For extremely broad smoothing, however, the effect of the bifurcations also decreases. This
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Figure 4.14:  Comparison between the standard trace formula (solid) and the uniform
approzimation (dashed) for B =50. (A) shows the contribution of the orbits (4,1)*,
(B) and (D) give the level density with smoothing widths of ¥ ~ 0.21 and 0.012 in kR.
The wvertical lines (C) indicate the positions of the bifurcations of the orbits included
in the calculation of (D).

is due to the properties of the periodic orbits in the disk billiard: At the bifurcation point,
the quasiperiod (i.e. the geometrical orbit length) is given by (cf. Eq. (4.14))

Ly = Rumsin (mw/v) ~ Rr? . (4.19)

The approximation on the r.h.s. is justified for all orbits except the diameter (where Ly =
2Rm), since for strong smoothing only the orbits with w = 1 are relevant. Smoothing
widths equivalent to an cut-off length L.« ~ Rm?w therefore lead to a strong damping
of the contributions from bifurcations. A cut-off length L. < Rm?w suppresses the
bifurcations completely.® This is the reason why in Fig. 4.11 the expected divergencies at
the bifurcations can not be seen.

The maximum effect of the bifurcations on the level density should therefore be observed
for medium strong smoothing. This situation is plotted in Fig. 4.15, where the length
cutoff of the triangular window function was taken to be L. = 12R, corresponding to
a smoothing width of 7 =~ 0.195. The dashed lines give, just as in Fig. 4.11, the exact
quantum result with equivalent smoothing. It is compared to the standard Gutzwiller
approach in (A, C) and to the uniform approximation in (B, D). Even for this situation,
where the influence of the bifurcations is maximal, the uniform approximation only leads
to marginally better results than the standard trace formula.

In conclusion, the influence of the bifurcations is negligible for all spectral resolutions from
the shell structure up to full quantization. Fig. 4.11 illustrates that the contributions are

®This strictly holds only for window functions with F(L) = 0Y L > Lmax, as for the triangular window
function used here.
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Figure 4.15:  The influence of the bifurcations. Dashed: exact quantum result for
B =50, ¥ = 0.195. Solid lines correspond to the standard Gutzwiller formula in (A,
C) and to the uniform approzimation in (B, D). The h correction from the bifurcations
is small and strongly localized at the bifurcation points.

damped out for large smoothing. For intermediate strong smoothing, as presented in
Fig. 4.15, the uniform approximation slightly improves the semiclassical level density.
The effect, however, is localized in a narrow region around the bifurcations and hardly
relevant in size. For higher resolution spectra, Fig. 4.13 shows that the contributions of
the bifurcations mostly cancel. The widths of the divergencies are becoming smaller, and
their net effect further decreases. The bifurcations therefore do not give rise to a relevant
h correction of the semiclassical level density, even though they lead to divergencies of the
trace formula. It should be noted that the A correction from the bifurcations is comparable
in size with the correction stemming from the correct implementation of smoothing. It
is therefore not reasonable to include the uniform approximation without adapting the
smoothing scheme.

4.3.4 Grazing

The mechanism which necessitated the implementation of the uniform approximation in
the last section was that the final stationary phase approximation in the derivation of the
trace formula for the disk billiard failed close to bifurcations points. Fig. 4.12, which plots
the dependence of the action S on the angular momentum L of the triangular orbit, shows
that another correction might be relevant in this step.

In Fig. 4.12(A) the stationary points, which correspond to the periodic orbits sketched be-
low, are well separated both from each other and from the integration limits. Fig. 4.12(C)
illustrates the case where the 31 orbit approaches the maximum angular momentum. For
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orbits which creep along the billiard boundary, one integration limit coincides with the
stationary point. The contributions of these paths to the trace sum are expected to be half
the value of the original formula. These corrections apply for orbits close to the boundary,
so that they are called grazing corrections. At B = kR, i.e. for R. = R, this correction
applies to all BT orbits simultaneously®. For this magnetic field strength the effect should
therefore be most pronounced.

The grazing correction can be included in the trace formula by incorporating the finite
integration limits. This leads to Fresnel type of integral instead of the Gaussian integrals
occurring for the unconstraint integration according to Eq. (2.9). The corresponding
modification of the trace formula for the disk billiard reads

(S -
59 = ?lhzm {Zﬁ: AﬁBﬁel(Tﬁ‘“" 5)] : (4.20)

The only changes to the original expression are the factors Bg, which replace the additional
phases d in Eq. (2.15). These complex factors are defined as

Bg= Y 27'2[C(¢) +iaS()] . (4.21)
§=¢€u,%o
For 3T orbits and R. < R the coefficient « = —1, otherwise a = +1. The 5% are

determined by the upper and lower integration limit, respectively:

€ = [kR | 2wvs

T T R.sin©
The geometrical quantities © and s are explicitly given in Eq. (4.7) on page 32. { = +1
for the 87, and ¢ = —1 for the 8~ orbits. For constant energy ¢ is proportional to R1/2.

Taking into account the finite integration limits therefore leads to corrections of the order
VR beyond the leading order.

The numerical evaluation of the trace formula again forces the introduction of a finite
smoothing width. The Fresnel integrals C' and S are oscillating functions. Therefore the
common damping ansatz Eq. 3.18 can not be used. The appropriate generalization is
given in Sec. 3.3.1, and Eq. (3.29) applies to the situation considered here. Fig. 4.16 shows
the semiclassical level density with (solid black) and without (gray) grazing correction.
The simple smoothing which assumes the Fresnel factor to be a slowly varying function
is given by the dotted line. The magnetic field is B = 50, so that R, = R for kR = 50.
The smoothing width is 7 & 0.33. The upper part of the figure shows the contributions
of the B orbits. The closeup in the inset confirms that the simple smoothing (dashed)
leads, indeed, to a 50% correction of the Gutzwiller contribution (gray) of the 3 orbits.
Including the correct windowing (solid black), however, mostly compensates this effect.
Even more surprising is the behavior of the 8~ orbits. Although they are not as close
to the integration limit as the 3% orbits, their grazing correction is nearly of the same
magnitude. The lower part of the diagram shows the total effect of the grazing correction
including all orbits. At B = 50, which corresponds to R, = R where the grazing effect
was expected to be most pronounced, the influence of the correction is small. The main

R.-FR
s —(Rcos®

F(cosO] . (4.22)

5For R. = R all BT orbits coincide, building the whispering gallery.
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Figure 4.16:  The effect of the grazing correction for B =50 and v ~ 0.33. Gray:
without grazing correction; dashed: grazing correction with simple smoothing; solid
black: grazing correction with correct smoothing. Offset for clarity.

effect is not a variation of the amplitude, but a slight shift of the phase stemming from
the complex part of Bg.

This result shows that the i correction stemming from grazing can be neglected in the
trace formula of the disk billiard. Please note that the effect of the correct windowing
is of the same order of magnitude as the correct implementation of the grazing effect.
As for the bifurcation treatment above, this again shows that the technical detail of the
implementation of smoothing is of considerable importance.

4.4 Semiclassical interpretation of g

An attractive feature of the semiclassical approximation which was not used until now is
the simple, intuitive picture it gives. This should be exploited in the following to explain
the shell structure of the disk billiard in terms of classical quantities.

According to the trace formula Eq. (2.15), each periodic orbit # contributes an oscillating
term to dg. Its frequency is determined by the classical action Sz along this path, which
can be locally approximated by

Sp(k) = Sp(ko) + hGa(k) (k — ko) , (4.23)

with the quasiperiod hG. For billiard systems the quasiperiod is, according to Eq. (3.21),
identical to the geometrical orbit length L given in Eq. (4.14). The amplitudes of the
oscillating terms are Ag F(Gg), where F' is the window function that depends on the
desired smoothing of the level density. Prior to the interpretation of the contributions of
the various orbits to dg, the behavior of Gg(= Lg) and Ag shall be discussed.

Fig. 4.17 shows the dependence of G on the ratio R./R = kR/B. Note that for R, > R
(see right diagram of Fig. 4.17) G is independent of the direction of motion +, even if the
classical action depends on it. In strong fields (R. < R, left diagram) G is different for
the “+” and the “ ” orbits. Only at the bifurcation points, where the two orbits coincide,
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Figure 4.17:  The quasiperiods G of the most important orbits in dependence of
R./R. For R, > R, G is independent of the index . The orbit bifurcation points in
strong fields (vertical lines) can clearly be seen.

they have identical G. According to Eq. (4.19), the value of G at the bifurcation points
converges to w - 2R for strong fields.

In Fig. 4.18 the amplitudes of the orbits relative to the B = 0 values,

in*2 0
A= 7 4.24
3 \/1—) ’ ( )

are plotted versus the ratio R./R. The amplitude of the “~” orbit is always larger than that
of the corresponding “+” orbit. At R. = R, where the “+” orbits change the topology (see
Fig. 4.3), their amplitudes are zero, so that these discontinuities do not lead to artefacts
in the level density. At the tangent bifurcations discussed above, the orbit amplitudes
diverge.

Figure 4.18: The amplitudes noo ' o, ] ' '
of the dominating orbits 3 = B :

(v, 1) with v = 2,...,5 rela-
tive to their B = 0 value. (The 3+
amplitude of the cyclotron or- A Y
bit is in arbitrary units.) At _Q RERRN
the bifurcation points R, = 21y %
sin(m v/w) indicated by wver- SN
tical lines, the amplitudes di- - \\@\:‘3‘
verge. For R. > R the am- 1 : K
plitudes of the bouncing orbits
quickly approach their asymp- L
totic (zero-field) value. The in-
set shows this convergence in a
wider range.
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Now the shell structure shall be interpreted in these classical terms, starting with the weak-
field regime (R. > R). The amplitudes for zero field given in Eq. (4.24) are proportional to
v~1/2_ favoring orbits with a small number of bounces v. The dependence of the amplitudes
on the magnetic field as shown in Fig. 4.18 indicates that in the region where the “ ” orbits
differ significantly from the “+” orbits, the latter are negligible. These effects” together
strongly favor the (2,1) and the (3,1)” orbit. They end up with comparable amplitudes.
From this picture a pronounced beating pattern from the interference of the diameter and
the triangular orbit is expected as the dominating feature of the level density. This beating

"The G dependence of F(G) also slightly supports this effect.
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pattern is indeed observed (cf. Fig. 4.11). The analogous effect in three dimensional metal
clusters is known as supershell oscillations [61].8 The semiclassical description furthermore
predicts that this beating will persist in homogeneous magnetic fields up to a strength of
B = kR. This is in agreement with the findings in Fig. 4.11. The thick gray lines in the
frames (1a) and (1b) correspond to a function’

sin(kG 1 9)) + sin(kG( g)-) = sin (k%) sin <k§) . (4.25)

It correctly predicts the structure of the level density in this regime.

Approaching the field strength where R, = R, all orbits change G sharply to 2rR. At
this point, the ST orbits coincide. The amplitude of this collective mode is small. The
[~ orbits differ from each other at R. = R. The change of S with varying B is, however,
identical for all orbits, since according to Eq. (4.23) all bouncing orbits have the same
lengths for R, = R. This implies that the variation with magnetic field is coherent for
all bouncing orbits, although their absolute values of S are different. The semiclassical
picture therefore predicts that the beating behavior will disappear at R. = R, leaving just
a simple oscillation with the common frequency. In Fig. 4.11 this sudden stop of the beat
at R. = R can clearly be seen. The gray line in frame 2 shows that the frequency of the
remaining single oscillation is predicted correctly.

In strong fields, only cyclotron orbits and bouncing orbits with a great number of bounces
v exist. The amplitudes of the latter are proportional to v=/2, so that in the strong field
limit the cyclotron orbits are expected to dominate the level density. The gray lines in
frame 3 of Fig. 4.11 show the corresponding oscillating term,'” which, indeed, reproduces
the main feature of the quantum-mechanical result (solid black). The skipping orbits with
greatest amplitudes are those which are close to their bifurcation points. All those orbits
have nearly the same value of G = w - 72 R. Their contributions should therefore interfere
constructively, giving rise to small structures in the level density of this period. Such
structures can indeed be observed in a higher-resolution spectrum, and their spacing is
consistent with this simple picture.!! The effect of the only relevant A contribution was
already discussed in Sec. 4.3.2. The reflection phases remove the degeneracy of all cyclotron
orbits, leading to slightly higher energies of the orbits close to the billiard boundary. This
leads to a reduction of the Landau peak heights and to an increased level density slightly
above the Landau levels. This correction is only relevant in the intermediate strong field
regime R. S R.

This analysis shows that the simple semiclassical picture using only the classical properties
of three periodic orbits is able to explain the main features of the quite complicated
behavior of the level density'? for arbitrarily strong fields.

8In the 3D spherical cavity, the beat is due to the interference of the triangle and the square orbits (see
Ref. [11]).

9The phases are, of course, adjusted.

0For a simpler comparison, the amplitude is chosen to rise quadratically, as indicated by Eq. (4.10).

HFor details see Refs. [1, 4].

?Here the dependence of the level density on the energy was interpreted. For the dependence on the
magnetic field a completely analogous approach is possible.
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4.5 Summary

In this chapter, a semiclassical approximation for the level density of the disk billiard in
homogeneous magnetic fields was derived. The agreement of the standard trace formula
with the exact quantum result is excellent for small fields as well as for extremely strong
fields, but not in the intermediate regime. This failure was suspected to be due to h
corrections to the trace formula. Three different A-corrections have been analyzed.

First a correction to the Maslov index was considered. This exhibits a discontinuity when
the reflection at the hard boundary is, with increasing field strength, replaced by the
soft turning point in the magnetic potential. A one-dimensional approximation leads to
reflection phases which interpolate smoothly between these limits. It was shown that
replacing the Maslov indices by reflection phases is of great importance in the strong field
regime R. S R. This holds for the shell structure as well as for full quantization.

At bifurcations, the second-order approximation of the action S around stationary points
breaks down, leading to spurious divergencies in the semiclassical amplitudes. A uniform
approximation to higher order in S shows that at the tangent bifurcation the contribution
to the trace formula is increased by a factor A/ [70]. The inclusion of this & correction is
important when one considers the contribution of individual orbits to the trace formula.
The corrections, however, rapidly loose influence if either many orbits are included (which
generally is the case if a higher resolution of the spectrum is required), or the smoothing
is so broad as to suppress the bifurcating orbits strongly. The main result of this consid-
eration is that the bifurcations have the maximum influence on moderately coarse-grained
level densities. But even for this case, the i corrections due to the bifurcations are only
marginal.

Finally the creeping correction, formally occurring due to finite integration limits, was
shown to be completely negligible in the semiclassical approximation — although on first
sight it is expected to be a 50% effect. Both the implementation of bifurcation and of
grazing effects require a modification of the smoothing procedure. The corrections from
the adapted smoothing are in both cases comparable to the magnitude of the /& corrections
themselves.

These considerations show that the only relevant correction to the trace formula is given
by the reflection phases. Including this, the semiclassical trace formula for the level
density is a good approximation for arbitrarily strong fields. It reproduces the exact
quantum-mechanical result with a remarkably reduced numerical effort. For the quantum-
mechanical calculation shown in Fig. 4.11, about 2500 eigenvalues had to be calculated
and numerically smoothed for each value of B , whereas the semiclassical result is obtained
summing the contributions of just 20 orbits.!3

The main features of the level density could be explained in a simple picture. The classi-
cal properties of three interfering orbits are sufficient to explain the behavior of the level
density in arbitrary field strengths. In weak fields the diameter together with the the
inwards-curved triangular orbit lead to a pronounced beating pattern. For B = kR all or-
bits interfere constructively, and in strong fields the cyclotron orbits dominate. They lead
to the Landau quantization. The degeneracy of the Landau levels is reproduced correctly
implementing the proximity effect of the boundary via the refection phase.

BFor R, > R even 10 orbits are sufficient.



Chapter 5

Semiclassical Transport

Transport properties are, in contrast to the level density considered above, readily
accessible in experiment. This chapter gives a short introduction to the semiclassi-
cal approximation of electrical transport within the linear response formalism. The
formulas presented will be used in the subsequent chapters.
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The semiclassical approximation of the level density has been successfully applied to hy-
drogen as well as to Rydberg states [92, 52| and to neutral helium [28]. In all these cases,
the experimental observables are emission or absorption lines. A theoretical description
hence has to resolve the individual energy levels of the system. This is feasible in a semi-
classical approach, but not the most favorable application of this method. For the required
full quantization, many periodic orbits have to be included in the trace formula. The ben-
efit from a semiclassical approach is considerable larger for systems where the line widths
exceed the mean level spacing. In these situations only the shell structure is observed,
which usually depends only on a few orbits.

Systems in this regime include nuclei, clusters and nanostructured devices — finite fermion
systems with particle numbers of some 10 to a few 1000. For all these systems, semiclassical
level density calculations have been performed. Such an analysis was presented for the
fission barrier of nuclei [19, 118] as well as for the shell structure of metal clusters in
magnetic fields [77] and their ground-state deformation [121, 122, 59]. Apart from these
examples, the application of the standard trace formula to experimental situations is very
limited, as the level density is rarely directly observable. In some cases a close relation
to the measured quantity can be assumed. Such an approach was used for the analysis of
the mass distribution of sodium clusters [61] or the magnetoconductance of a mesoscopic
circular quantum dot [2].

To extend the applicability of semiclassical methods it is desirable to develop descriptions
for other physical quantities than the level density. This has been done for example
regarding the magnetic susceptibility [96, 78|, current oscillations in I-V curves [114] or
the conductance [63, 41].

As already pointed out, nanostructured semiconductor devices are extremely versatile sys-
tems. Many parameters like size, geometry, electron density or magnetic field can be varied
experimentally, some even during measurement. This opens up tremendous new theoret-
ical and experimental opportunities, as many of these parameters are beyond control in
more “natural” systems like atoms and nuclei. Most easily accessible to measurement are
electrical transport properties. This is also an area of great commercial interest: The rapid
developments in semiconductor technology lead to continually decreasing feature sizes on
memory or logic circuits. The smallest structures already approach the mesoscopic scale.
It is for these reasons, the direct experimental access, the great variability of the device,
the large number of controllable parameters, and the commercial relevance that much of
the work on nanostructures deals with electrical transport properties.

A quantum mechanical description of these systems is very demanding. The usually large
number of electrons involves the calculation of numerous highly excited states. Regarding
semiclassics, in contrast, high quantum numbers are especially favorable. As pointed out
above, the semiclassical description is further facilitated by the broad line widths of these
systems, which generically only allow the observation of the shell structure. All this makes
a semiclassical approach to these structures very promising.

The following sections are devoted to the derivation of a semiclassical linear response
formula for electrical transport. This will be applied to specific systems in the subsequent
chapters.
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5.1 Semiclassical linear response

The calculation of transport properties for small external fields is possible within the
context of linear response theory. This powerful tool relates the response of a system to
a small external excitation to its ground state properties. Richter and Mehlig [58, 120]
have derived a general semiclassical treatment of dynamic linear response functions for
ballistic quantum systems at finite frequency and finite temperature. Their ansatz is
not only applicable to electrical transport, but also to magnetic properties or far-infrared
absorption of closed quantum dots. Here, the discussion is restricted to electrical transport
in static external fields. Please note that due to the linear response ansatz all nonlinear
transport effects are beyond the scope of this work. Those effects can already occur for
low-excitation measurements (cf. Ref. [74]).

For absolutely clean systems the conductivity is not finite. In contrast to the level density,
which can also be calculated for pure systems, transport properties are inseparably related
to the disorder present in the system. The semiclassical approximations therefore depend
strongly on the detailed properties of the scatterers in the sample. This is why it is not
possible to give a unified approach valid for all situations.

The following section will describe the different transport regimes, before Sec. 5.5 presents
a semiclassical approximation for coherent ballistic transport. This is the regime that will
be relevant for the specific systems considered later.

5.2 Different transport regimes

The transport properties depend on the microscopic scattering process, the density of the
scatterers, their strengths and their distribution. A rough classification of the different
transport regimes is possible regarding the typical length scales involved:

The system size a:
This important datum for the discussion of quantum oscillations may be ambivalent
for some systems.’

The magnetic length £5:

A magnetic fields introduces an additional length scale g = \/h/(eB), which may
replace the system size a in some problems. This complication will not be discussed
here.

The Fermi wavelength Ag:
Arp = 2mh/vV2m*E usually defines the smallest length scale. For two-dimensional
systems this is equivalent to Ap = \/7/ns, where ng denotes the electron density
per spin.

The elastic mean-free path £:
This is a quantum mechanical quantity, generally without classical meaning. It is
related to the total amplitude diffracted by disorder [68] and to the single-particle
relaxation time [97]. It is often given in terms of the total relaxation time 7 = ¢/vp.

!For a long, narrow channel it is a-priori not clear whether the length or the width is the characteristic
quantity. Something similar holds for antidot lattices, where both the system size and the size of the
elementary cell might be relevant.
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Here v denotes the Fermi velocity vp = hk/m*, which in two dimensions can be
expressed as vp = 2h\/Tng/m*.

The transport mean-free path £7:
This quantity can be interpreted classically, indicating the length scale over which
the electron momentum is randomized. It is related to the momentum relaxation
time 7, via {7 = T,vp. Short-range impurity potentials lead to isotropic scattering,
and ¢p = £. For long-range impurity potentials the momentum before and after the
scattering process are correlated, so that ¢ can significantly exceed /.

The phase coherence length £5:
L4 gives the length over which the phase coherence of the wave function is lost. The
phase coherence length exceeds the mean-free path, as elastic scattering preserves
phase coherence. Only some inelastic scattering processes lead to finite 4.

Depending on these length scales, transport can roughly be divided into the following
regimes:

macroscopic (a > Ar) or microscopic (a 2 Ap):
a > A\r is the regime of high quantum numbers, where the levels get closer in energy.?
Once the line width exceeds the mean level spacing, the quantization information
gradually disappears, eventually leading to classically smooth spectra.

classical (a > {3) or coherent (a < (3):
For a > /lg, phase coherence is broken between two points in the system. Thus
no correlation of the wavefunctions at these points is left, and the two parts of the
system add classically (i. e. without interference).

diffusive (/7 < a) or clean ({1 > a):
The regime (¢ > a) is often referred to as the ballistic regime. There particles can
traverse the system without randomizing their momentum.

The distinction between diffusive and ballistic systems is easily visualized in the semiclas-
sical picture. Fig. 5.1(A) depicts the diffusive situation, where a trajectory is frequently
scattered, and the motion is essentially a random walk. The periodic orbits in this system
are depicted in the lower part of Fig. 5.1(B). They depend on the individual locations of
the scatterers. The assumption that, in analogy to the level density discussed above, the

(A)

(B) © (D)

* S A S\ IR
1 I\

%

Figure 5.1:  Diffusive (A, B) and ballistic transport regime (C, D). (B) and (D)
depict some classical closed orbits. These are relevant for quantum oscillations.

2This holds for systems where the number of degrees of freedom minus the number of constants of
motion is larger than one.
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system properties depend on the classical periodic orbits already captures the essential
physics of these systems. The detailed structure of the magnetoconductance depends on
the microscopic distribution of the scatterers, which is unique for each sample. This leads
to the “fingerprint” characteristics of the magnetoconductance of disordered samples.

Weak localization, another effect in diffusive samples, can be understood as a consequence
of coherent backscattering: The central mechanism is that closed paths as in the upper
part of Fig. 5.1(B) can be followed in both directions. Their contributions therefore
interfere constructively. This enlarges the return probability of the particle, which is
hence weakly localized. A magnetic field breaks the time-reversal symmetry, so that the
two orientations are no longer coherent. This explains why a magnetic field destroys weak
localization. Detailed information about these and related diffusion-based effects can be
found in Refs. [99, 90, 91].

In the following coherent (a < lg), ballistic (I > a), mesoscopic (1 € Ap/a <K o0)
transport is considered. Fig. 5.1(C) sketches the ballistic case, where trajectories are
rarely scattered. In this regime the periodic orbits (c.f. Fig. 5.1(D)), and thus the quantum
oscillations, mainly depend on the confinement of the system and not on the distribution
of the scatterers.

The effects of disorder on the semiclassical approximations have already been listed on
page 17. For the low impurity concentrations of ballistic systems, periodic orbits as in
Fig. 5.1(B) can be neglected, and the coherence of degenerate families is hardly affected.
The orbits which contribute in the ballistic regime are therefore those of the clean system.
Disorder induces a finite probability of scattering out of a periodic trajectory. This leads
to a reduction of the semiclassical amplitudes.

Note that in the ballistic regime the quantum oscillations are dominated by the confine-
ment potential, i.e. depend on the fact that the system is finite. Therefore quantum
mechanical calculations including impurity scattering which rely on the translational in-
variance of an infinite system cannot be applied here.

5.3 The model for disorder

Scattering is, as already outlined in Sec. 3.1, introduced by appropriate averages. For a
single, isolated system this is the average over the impurity constellation. If ensembles of
systems, like dot-arrays, are considered, this average also includes system parameters like
geometry and Fermi energy.

For an explicit calculation, both the scattering potential and the distribution of scatter-
ers have to be known. The problem of a realistic description of these properties is not
completely settled so far. The scattering potential depends strongly on the nature of the
scatterer, its distance to the 2DEG, and, for ionized impurities, the screening properties
of the 2DEG. Modeling the distribution of scatterers is also non-trivial. For high-mobility
2DEG, scattering at ionized donors is the dominant process. Their distribution does not
only depend on the growth process,> but also on the cooling scheme. The underlying
mechanism is called coulomb ordering. It applies to the generic case where only a part of
the donors is ionized. While cooling down slowly, an energetically favorable subgroup is
getting ionized. The ionized donors are hence preferably equally spaced. This introduces

3The growth process is usually, but not generally believed to lead to randomly distributed donors.
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correlations in the positions of the scatterers, even if the donors themselves are randomly
distributed [110, 113].

The calculation of transport properties, especially of line shapes and amplitudes, from
realistic impurity potentials and distributions is currently an area of active research (see,
e.g., [60]). As this work is not intended to contribute to this area, impurity correlation
effects will be neglected in the following. A wide-spread model for uncorrelated impurities
uses random gaussian potentials

V(r)= Z_:.NZJT/QQ exp [% ( £R > ] , (5.1)

characterized by an average strength Vy and a correlation length &. Following this ansatz,
Richter [105] derived a semiclassical approximation for the susceptibility. He finds that the
impurities can be included in the semiclassical susceptibility by factors F'(L) damping the
orbit amplitudes. Due to the different averages involved, the results for individual systems
differ from those for ensembles. They also depend on the relative size of the correlation
length &, the system dimension a, and the Fermi wavelength Ag. In the context of this
work isolated systems with finite-range (Ap < £ < a) impurities will be considered. For
those systems F'(L) is given by

F(L) = e L/ (5.2)

with the elastic mean-free path ¢. For these samples the transport mean-free-path ¢ is
considerably larger than ¢ [105]. Therefore a ballistic treatment of systems with a size
comparable to the elastic mean-free-path is still justified.

Please note that the ansatz of randomly distributed scatterers is restricted to the first
repetition of classical orbits. This comes about as the repetition of an orbit sees the same
impurity constellation as the primitive orbit. Therefore random impurity positions on
the sample are not random along the trajectory. A refined discussion as presented by
Richter [105] shows that the higher repetitions of orbits are also damped exponentially,
but with an exponent depending quadratically on the repetition number.

5.4 Finite temperature

Just as the inclusion of scattering, the consideration of finite temperatures in semiclassical
linear response formulae is not completely settled so far®. The intuitive approach to replace
the 0 functions in the corresponding quantum mechanical expressions by Lorentzians with
width v

I v

has been confirmed by more involved calculations [80] and has been established as a
quasi-standard [112]. Since a detailed discussion of the microscopic mechanism involved
in dissipation is beyond the scope of this work, this heuristic approach will be implemented.

4For grand canonical systems, the approach of Sect. 3.1 can shown to be exact [17].
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5.5 The semiclassical Kubo formula

In the ballistic regime the quantum oscillations are, as already pointed out, determined
by the sample boundaries, not by the impurity constellation. This geometric effect is of
special interest, as the geometry of the sample can be adapted in a wide range. Two
different types of ballistic devices can be distinguished:

The first are small structures coupled to leads, which are completely phase coherent.
The current through these systems does not scale with the system size, so that only
conductances, but no conductivities can be defined. For the transport through those
samples, a semiclassical approximation of the Landauer-Biittiker formalism is appropriate.
The generic example for the second class of devices is a regular array with a lattice constant
smaller than the phase coherence length, and a total size exceeding fg. Then quantum
oscillations stemming from interference effects within elementary cells can be observed,
but the elementary cells themselves add classically. Therefore the definition of specific
quantities like conductivities is justified. For those systems, Kubo linear response theory
is the adapted description.

For the systems considered in this work, the Kubo formalism will provide the correct
framework. Please note that the distinction between Kubo and Landauer does not reflect
a physical difference: Quantum mechanically, both approaches have been shown to be
equivalent [12].

The general idea how to obtain a semiclassical version of the Kubo conductivity is to
express the quantum mechanical Kubo formula in terms of Green’s functions. After the
inclusion of finite temperature and weak disorder by appropriate averages, the Green’s
functions are replaced by their semiclassical approximation. Following this line, Richter
and Hackenbroich/von Oppen derived a semiclassical expression for the oscillating part
of the conductivity tensor.” They use approximation Eq. (5.2), which is equivalent to
the assumption of an energy-independent scattering time. Temperature is included as
indicated in Eq. (5.3). Vertex corrections, which correspond to orbits including scattering
events (c.f. Fig. 5.1(B)), are neglected. Under these assumptions they find

o 2¢é R (75)Fn(7s) o
B PR L papr 1) (-3
(5.4)
. 2 62 108 R ( ) (Ts) ™
2B B) = 2 (eaB+C )M ( : %) -

In these formulas the sum over the primitive periodic orbits ppo is separated from the sum
over their repetitions n. All quantities except the Maslov indices p refer to the primitive
periodic orbit.® The temperature 7" is included by

nTy/ 73

Ry (73) = sinb(nTy/75) (5.5)

with the temperature-related scattering time 73 = h/(7kpT). The impurities lead to
an exponential suppression of longer orbits according to Eq. (5.2). In the following an

5The derivations of the authors are virtually identical, and the results were published simultaneously.
Please note the (identicall) misprints in the expression for o4y in Refs. [63, 41]. There, the action of the
total orbit instead of the primitive orbit shows up in 9S/9B. The formulas in Refs. [105, 42] are correct.
5The Maslov index for stable orbits is not proportional to the repetition number.
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approximate expression for the damping term which depends on the period of the orbit
instead of its lengths will be convenient:

Fo(rs) = e T0/(27s) (5.6)

The scattering time 75 = m*u/e is extracted from the experimental mobility . The
velocity-velocity correlation C;; of a primitive periodic orbit is finally given by

oo Ty
Cij = /0 dt et/TS/O dr vi(t)vi(t+7) . (5.7)

Apart from the prefactors and the velocity correlation function (which replaces the period
of the orbit), the structure of the trace formula Eq. (5.7) is identical to the Gutzwiller
expression for the level density Eq. (2.14).

The semiclassical approximation of the conductivity tensor will be used to calculate elec-
trical transport properties of the free 2DEG in chapter 6 and of the channel with antidots
in chapter 7. Prior to this, the basic formulas connecting ¢ with the measured voltages
and currents will be reviewed.

5.6 Electrical transport

Within linear response, the local electrical field E and the local current density j are
related via the conductivity tensor o according to

-

j=cF. (5.8)

The inverse tensor p = o~ ! is known as the resistivity. It connects j and E by E = Bj’
and is explicitly given by

. 1 < Tyy _ny> ' (5.9)

OgaO0yy — OgyOyx —Oyx Ozxx
For isotropic systems o4, = 0y and oy, = —0yy, so that Eq. (5.9) simplifies to
Ozx “Oay
pro= =2 and  pgy = (5.10)
02, +02, 02, +02,

For the free electron gas in high magnetic fields |o,y| > 04,. In this case the hall resistivity
and the hall conductivity are, as expected, inverse quantities: py, ~ 1/04,. The longi-
tudinal conductivity, however, is proportional to the longitudinal resistivity: pzz X 0zz-
This relation is somewhat counterintuitive.

For the usual hall-bar geometry, i. e. a macroscopic, homogeneous, rectangular system with
length [ and width w where a current I is drawn in z-direction, Eq. (5.10) leads to

Um = RlI and Uy == RhI s (511)

with the longitudinal resistance R; := %pm and the hall resistance Rj, := pgy. Please
note that for two-dimensional systems the hall resistivity and the hall resistance are iden-
tical.



Chapter 6

Magnetoconductance of the free
2DEG

The experimental realization of a free two dimensional electron gas (2DEG) is out-
lined. The Shubnikov-de-Haas oscillations (SdH) in its longitudinal resistivity are
reproduced by the semiclassical Kubo formula, but the plateaus in the Hall resistivity,
i. e. the integer quantum Hall effect (QHE), are not. The description of the QHE
succeeds by including a specific higher-order h term originating from the level density.
The corresponding correction is derived for general systems.
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The free two dimensional electron gas (2DEG) is predisposed as a test system for the
semiclassical Kubo formula Eq. (5.4). The longitudinal conductivity in the presence of a
transverse magnetic field B was already evaluated by the authors of the semiclassical Kubo
formula [63, 41]. In the following sections, both the longitudinal and the Hall conductivity
for the free 2DEG are derived. The resulting description is also valid for particles with
spin. For those, ns denotes the electron density per spin orientation, i. e. ng = 2(S+1/2)n..
For spin-less particles, ng is given by the total electron sheet density n..

6.1 Two dimensional electron gas

The electronic bands of semiconductors bend at interfaces. In a suitable designed hetero-
structure (e.g. GaAs/GaAlAs), this leads to a narrow, triangular region at the interface
where the conduction band is below the Fermi energy. Er can be chosen so that only the
lowest eigenstate of this well is occupied. For sufficiently low thermal energies higher states
are energetically unaccessible, so that the corresponding degree of freedom is blocked.
From a quantum mechanical point of view, such a system is truly two-dimensional. Fig. 6.1
illustrates this situation.

n-GaAlAs GaAs

4/Si3N 4T}
<+— n-GaAlAs —

< GaAlAs—>
T~ 2DEG

T GaAs —

Figure 6.1:  Upper part: The mechanism leading to a 2DEG at the interface. Lower
part: An undoped spacer layer between GaAs and n-GaAlAs reduces impurity scatter-
ing at the donors. The 2DEG can additionally be laterally confined by electrostatic
gates (left), shallow etching (middle) or deep etching (right).

Implementing the donors at a distance from the interface extremely reduces the impurity
scattering. At low temperatures, where electron-phonon scattering can be neglected, this
is nevertheless the dominant scattering mechanism. This comes about as semiconductors
can nowadays be produced with extremely low contaminations and lattice defects. The
latter is facilitated by the nearly identical lattice constants of GaAs and GaAlAs. For
these reasons, the mobility of those devices can be extremely high. The mean-free path
in state-of-the-art samples exceeds 10um.

An additional lateral confinement of the 2DEG is possible either by etching or by applying
electrostatic gates. By electron beam lithography structures in the 10nm regime can be
defined. This is comparable to the Fermi wavelength, which is typically of the order of
some 10nm.
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6.2 The classical conductivity

In the classical picture, an external electric field accelerates the electrons. Due to impurity
collisions, they acquire an average drift velocity v = —ukF. The mobility p is related to
the scattering time 7, via u = ers/m*, and the mean-free path is given by ¢ = vp7s. The
classical magnetoconductivity can be derived using the Einstein relation

g =e>g(Er)D

=

(6.1)

where g denotes the level density and D the diffusion tensor. D can be evaluated within
linear response, leading to [103]

Dy = [ dt(t) v 0). (6.2

where the brackets denote an average over the Fermi surface. This finally leads to the
Drude conductivity tensor (for a detailed derivation see e. g. Ref. [99])

~ a0 1 —WeTs 725627'5
— ; = == . 6-3
277 + (weTs) < WeTs 1 > 70 m* MsCH (6.3)
The symmetry of the system enforces o, = 0y, and o,y = —0y,. Using Eq. (5.10), the
resistivity tensor p is given by
~ 1 WeTs 1 m*
= ; = — = . 6.4.
L=ro < —WcTs 1 ) Po o n562Ts ( )

The classical longitudinal resistivity pz. = po = m*/(n.e?7s) is independent of the mag-
netic field. Experimentally, the classical limit is recovered in the low-field regime. There-
fore the measurement of py.;|p—¢ is a convenient way to determine the mobility p (and
thus the scattering time 7). The Hall resistivity p,, = B/(ens) is proportional to the
magnetic field, which is consistent with the usual definition of the Hall resistance.

In analogy to the smooth part of the level density g considered above, the classical (smooth)
part of the conductivity (resistivity) of the free 2DEG according to Eq. (6.3) (Eq. (6.4))
is denoted with a tilde.

6.3 Leading order in 7

The trace formula for the oscillating part of the conductivity given in Sec. 5.5 is, just as
the Gutzwiller trace formula, only valid for isolated periodic orbits. An extension to the
case of the free 2DEG with its two-dimensional translational symmetry is possible using
an approach analog to Creagh and Littlejohn’s treatment of the level density for systems
with continuous symmetries (see Sec. 2.3, especially Eq. (2.15)). Alternatively one can
proceed as for the calculation of the level density associated with the cyclotron orbits
(cf. Sec. 4.2.1.3). Both approaches reduce the problem to a one dimensional harmonic
oscillator with an additional factor

eB

n=Veog

(6.5)
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from integration over the symmetry. The cyclotron orbit is the only primitive periodic
orbit of the system, so that the sum over all orbits in the trace formula reduces to the
sum over its repetitions. The velocity-velocity correlation of the primitive periodic orbit
according to Eq. (5.7) can be calculated analytically, resulting in

WeTs

m and Cg;y = R27T (

2
Coz = RC T (wers)?

(6.6)

with the cyclotron frequency w, = eB/m* and the cyclotron radius R. = h/eB - /4mns.
Inserting all this into Eq. (5.4) and denoting the period of the primitive orbit with Ty =
27 /w, results in

_ 90 - —p?To /2T, = 1
1) = 2 —_ Th)e P 20/<Ts cos |2 E— -
Ozxx 1+ (wcTs)2 ;R(p 0)6 CO8 |: ™ < 2>:|
_ 1 90 - —p?To/27s = 1
00z = —2 oo T T (w2 pz::lR(pTo)e cos [2mp | E 51 (6.7)

The relation between o, and o, is remarkable: Both the classical contributions according
to Eq. (6.3) and the oscillating parts of Eq. (6.7) are proportional to each other, but with
inverse factors:

Opy = —WeTs * Oz, and  00yy = —1/(weTs) - 004, (6.8)

In the strong field limit the classical Hall conductivity thus dominates over the longitudinal
conductivity (o > 044), and the quantum oscillations in o, are suppressed compared
to the oscillations in 04, (004y <K 604).

On Landau levels, the normalized energy E in Eq. (6.7) is identical to the Landau quantum
number. For spin-less particles it is therefore given by F = Ep/(hw.) = 2nhns/(eB).
Including spin leads to

~ EF *lm*
- 6.9
hw, + 59 2me (6:9)

with the spin quantum number s and the Landé g-factor g* of the material. For the
2DEG in GaAs, s = £1/2 and g*m*/m, ~ —0.0293. This corresponds to a spin splitting
of ~ 1.5% of the Landau level separation, which usually cannot be detected. For InAs, in
contrast, g*m*/m. ~ 0.338, leading to a separation of the two spin peaks of ~ 17% of the
Landau level distance. This explains why in GaAs/GaAlAs heterostructures the spin is
generally neglected. Including spin, the contributions of the spin-subsystems to do have
to be added. As obvious from Eq. (6.9), the inclusion of spin only leads to a shift of the
Landau levels. Since within this approach no additional spin-related effects are included,
the discussion of Eq. (6.7) can be restricted to spin-less particles without loss of generality.

The total resistivity p = o~ ! is found by adding the classical part according to Eq. (6.4)
and the semiclassical approximation of the quantum oscillations of Eq. (6.7), i.e.

o=o0+dc0. (6.10)
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For the longitudinal conductivity o, the quantum mechanical self-consistent Born ap-
proximation for short-range scatters [9, 87] in the low-field regime w.7s < 1 is equivalent
to this semiclassical result.

In Fig. 6.2 the result of Eq. (6.7) for p,, and py, is shown for a system with electron
density ny = 1.0 - 10'%m~2 and mobility x = 100m?V~!s™! at a temperature of 10K.
The classical resistivity (solid) is compared to the semiclassical description (dashed). The
quantum oscillations to pg, are seen to be an important correction in large fields. They
give rise to the Shubnikov-de-Haas (SdH) oscillations.
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Figure 6.2: The diagonal and the Hall resistivity of the free 2DEG. Solid: classical
result of Eq. (6.4); dashed: semiclassical results according to Eqs. (6.10, 6.7, 6.4). The
SdH oscillations in the longitudinal resistivity are well reproduced, but the QHE is not
recovered in the semiclassical approximation. Insets show the influence of mobility
(left) and temperature (right) on pr.. Dashed: results of the central graphic (i =
100m?V~1s~! T = 10K); solid: p = 50m?V~1s~! (left inset), T = 3K (right inset).

The dependence on the scatterer density is illustrated in the left inset. The dashed line
repeats the result of the main graphic with g = 100m?V—!s~!, whereas the solid line
corresponds to p = 50m?>V~1s~!. The zero field resistance is, as expected from Eq. (6.4),
inverse proportional to the mobility. The amplitude of the SAH oscillations increases
with lower mobility, and their relative width remains essentially unchanged. This is not
consistent with the general accepted picture of the SAH oscillations. An increased scatterer
density extends the region of localized states between the Landau levels, pushing the
mobility edges closer to the Landau levels. This leads to sharper peaks in p,,. The
localization of states is semiclassically due to periodic orbits which include scattering
events. As pointed out in Sec. 5.2, those have been neglected in the derivation of the
semiclassical Kubo formula. Therefore the semiclassical approximation for the diffusive
limit can not be expected to describe the SAH line widths correctly.

The right inset shows the influence of temperature. The dashed line repeats the result of
the central graphic for 7" = 10K, whereas the solid line corresponds to 7" = 3K. The SdH
oscillations get sharper for lower temperatures. High temperatures lead, as expected, to
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the classical limit p;; = po. This is the correct temperature dependence.

In conclusion, the longitudinal resistivity of the 2DEG is well approximated by the semi-
classical Kubo formula. It only fails to reproduce the correct dependence of the peak
widths on the mobility. This is due to the neglect of periodic orbits including scattering.

In contrast to the successful description of p,., the semiclassical approximation of the
Hall resistivity is inadequate. The semiclassical correction to the off-diagonal resistivity
Eq. (6.7) plotted in Fig. 6.2 is completely negligible. It does not reproduce the integer
quantum Hall effect (QHE).

6.4 h correction from the level density

The failure of the semiclassical description for p,, might be due to the restriction to leading
order in h. Higher-order corrections can be implemented by going back to the quantum
mechanical formula for the linear transport properties proposed by Stréda [75]:

V-0 = 7e?h Tr[vy0(F — H)v,d(E — H)] (6.11)
ON(E,B j
Viog = e % + %eQTz Tr[v, G (E)v,6(E — H) — v,6(E — H)v,G™(E)] .
Here G* denotes the advanced and retarded Green’s function, respectively. The second
term of o, is analog to the expression for o,,. This well approximated by the semiclassical
Kubo formula, indicating that higher-order corrections to this term are irrelevant.

In the following, a higher-order correction to ON/9B shall be derived. It should not be
restricted to the free 2DEG, so that the general form of a semiclassical level density is
chosen as starting point:

S, T
6g(E) A k+2)/2 ZAPO TPPO COS ( 7]; — Hpo 2) ’ (612)

The damping terms due to temperature and impurities as well as other prefactors are in-
cluded in the amplitudes Ap, for notational convenience. The volume term of the Thomas-
Fermi level density, which gives the leading contribution to the smooth part of g(FE), is
independent of the magnetic field. Therefore only the oscillating part of the level density
contributes to ON/0B. Using

Efp
SN(E, B) — / 59(E, B) dE . (6.13)
0

the semiclassical approximation for the first term in Eq. (6.11) can be expressed as

ol = e ON(E.B) _ 8[5N(E B)] 614

OB
Spo(E, B) T
h(k+2 72 ZpaB/ Aoe(E.) 8E °S< h _“p°§> aE

(Er,B) S.0(S, B) T
— Zpo\ ) =z
- h(k+2/2 ZpaB/S(OB poSB)cos< - upo2) ds .

22
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In the second line it was used that the period of an orbit is given by T, = p - Tppo =
p-0Sppo/OE, where p denotes the winding number. The last step assumed that the action
S(E, B) is invertible!, so that F(S, B) is uniquely defined for all S and B. The integral
over S can be performed by subsequent partial integration. The partial derivative with
respect to B acts both on the semiclassical amplitude of the orbit and on the action.?
Taking these derivatives and sorting the terms in powers of A finally leads to

E=Ep

;. —e 1 05p0 Sho ™ 5
50:01/ ~ W Z; [ADOW COS ( h — /,LPOE + 6ny . (615)
po E=0

R —e€ ] Spo T .
(SU:ry—W%;]—)[;hCOS(?,up0§+Z§)X

di 0Sp O [ di!
X{(d—SiApO(S’B)) o8 a—B(mAm(S’B))}

The leading order in A is given by the first term of 5U£y in Eq. (6.15). If the contribu-
tion of the lower integration limit vanishes, this reproduces the term 1/edS/0B of the
semiclassical Kubo formula Eq. (5.4). 60£‘y gives a series of h-corrections.

E=FEf

E=0

The starting point of this derivation is given by the semiclassical level density, which by
itself is only valid in leading order in A. Higher-order corrections to dg entail additional
terms to Eq. (6.15). If the semiclassical approximation of the level density of the system
is good, 50% as given in Eq. (6.15) contains the dominant corrections.

For the free 2DEG this condition is fulfilled, since the semiclassical approximation of its
level density is exact (cf. Sec. 4.2.1.3). For this system all & corrections to (50'£y are included
in Eq. (6.15).% The relevance of the h corrections in Eq. (6.15) for the conductivity tensor
of the free 2DEG shall now be discussed.

By writing the prefactors of the level density Eq. (4.11) as a product of dS/dE and
an amplitude, Eq. (6.15) can be applied to the free 2DEG.* Including explicitly finite
temperature and impurities by appropriate damping terms, the result reads

2en 2 ~ 1
I _ S —p?To/27s = h
00y, = pg_l R(pTy)e P 7074 cos [27rp (E 2)] + 60y
solt = G > 1R( Ty)e 7" T0/27s gin |2 Bl (6.16)
Tay = T 2 pTp)e sin |27p 5| - .

The period of the primitive cyclotron orbit is given by Ty = 2mm/(eB). The first term
of 60£y is the leading-order contribution in A°. It is already included in the trace formula
Eq. (6.7).5 Only the first term of Eq. (6.15) is nonzero, so that for the 2DEG only

!The general case is that S (E,B) can only be piecewise inverted. The following derivation can be
extended to this situation. This introduces only the inconvenience to notate the correct branch or, if
necessary, the sum over the relevant branches.

21f the Maslov index Ipo is replaced by the reflection phase ¢r, a third term shows up in the following
calculation, since ¢r depends on B and E.

3The other terms of Eq. (6.11), of course, may give rise to additional higher-order contributions.

4 Alternatively, §oiy can be directly evaluated from &g of Eq. (4.11).

"Note that the sheet density contains powers of &, since ns = Epm/(27h?).

Note that €&s = 20 and 1 — Mo — L to compare with Eq. (6.7).

WeTs WeTs 14+ (weTs)? weTs [14+(weTs)?]
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corrections in second leading order i show up. The prefactor of 50211 compared to the
prefactor of 6a£y increases linearly in B. Therefore this correction, although of lower order

in h, becomes dominant in strong fields.

The influence of this & correction is presented in Fig. 6.3. The solid line indicates the
semiclassical result in leading order in A, as given above. The dashed line includes the
correction of (50%. The semiclassical trace formula now reproduces the plateaus in the
Hall resistance, i.e. the QHE. This shows that the quantum Hall effect is dominantly an
effect of second leading order in h. Its origin is the dependence of the period T}, = dS/dE
on the magnetic field.
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Figure 6.3:  The longitudinal and the Hall resistivity for the free 2DEG. Solid:
semiclassical result in leading order in h as in Fig. 6.2; dashed: semiclassical result
including the T correction of Eq. (6.16). The correction to the longitudinal resistance
s negligible. The quantized conduction, however is purely an effect of second leading
order in h. Insets show the influence of mobility and temperature on pz,. Dashed:
results of the central graphic (n = 100m?*V~=1s=1 T = 10K); solid: 1 = 50m?V—1s~1
(left inset), T = 3K and T = 50K (right inset).

The left inset shows the influence of the mobility on the QHE. The dashed line is a copy of
the result shown in the the main graphic. It corresponds to u = 100m?>V~—1ts~!. The solid
line shows the data for 1 = 50m?V~'s~!. The Hall resistivity is hardly influenced by the
amount of disorder. This does not agree with the established picture of the QHE, where
the width of the localized states, and thus the width of the Hall plateaus, depends on the
impurity concentration. The reason for this deficiency of the semiclassical approximation
in the non-ballistic regime has already been given discussing the peak widths of the SdH
oscillations above. Additionally, the validity of the present inclusion of finite free path-
lengths is, as stated in Sect. 3.1, limited to the leading order in A. It thus cannot be
expected that this simple formalism reproduces the behaviour of higher-order % terms
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correctly.”

In the right inset of Fig. 6.3 the temperature dependence is depicted. The solid lines are
calculated for T' = 3K and 1" = 50K, respectively. For low temperatures the step-function
is approached, whereas large temperatures smear the steps until the classical linear re-
sult is recovered. The temperature is therefore correctly included in the semiclassical
approximation.®

In conclusion, the semiclassical Kubo formula successfully explains the longitudinal con-
ductivity of the 2DEG, but fails for the Hall component. The A corrections according to
Eq. (6.15) are the key ingredients for a semiclassical description of the Hall conductivity.
The term in second leading order in A is responsible for the integer quantum hall effect.
Including this term, the semiclassical Kubo formula explains both the Shubnikov-de-Haas
oscillations and the QHE. It also reproduces the temperature dependence of these effects
correctly. The approach is, however, limited to the ballistic regime. It therefore fails for
effects that are related to localization, like the dependence of the QHE plateau width
on the mobility. To describe these dependencies, periodic orbits which include scattering
events would have to be taken into account.

The discussion of the Hall resistivity was restricted to the free 2DEG. The higher-order
h corrections, however, were derived for arbitrary systems. They are not only relevant
for samples which exhibit cyclotron-like orbits. For arbitrary systems, 50211 contains
the relevant corrections if the semiclassical description of dg is sufficiently good, i.e. the
higher-order A contributions to the level density can be neglected. Since this condition
is frequently fulfilled, it is justified to include at least the second leading order term of
Eq. (6.15) in all semiclassical descriptions of the Hall conductivity.

"Note that in this situation the procedure of Sect. 3.3 cannot be applied, since it starts out from the
assumption that the line shape is known. The calculation of line shapes (or Hall plateaux widths) is thus
obviously beyond the scope of this approach.

8This had to be expected, since the inclusion of finite temperature is exact for grand canonical systems
as long as phonon scattering can be neglected (cf. Sect. 5.4).






Chapter 7

The channel with antidots

This chapter studies the longitudinal magnetoconductance of a mesoscopic channel
with a central antidot dimer. The experimentally observed conductance oscillates in
dependence of both the magnetic field strengths and the antidot radius (regqulated by the
applied gate voltage). The period of the oscillations in B is approzimately constant,
and the maxima positions exhibit characteristic dislocations when varying the anti-
dot diameter. This behavior was previously related to inherent quantum effects and
believed not to be accessible by semiclassical methods. The semiclassical description
developed in this chapter is able to reproduce qualitatively as well as quantitatively all
observed features. Additionally, it allows an intuitive explanation of the origin of the
mazxima dislocations.
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Many physical observations in mesoscopic ballistic devices could successfully be explained
by the interference of classical orbits in the system. Among these are the Shubnikov-
de-Haas oscillations and the QHE of the free 2DEG discussed in the previous chapter,
the magnetoconductance oscillations of a 2DEG in an antidot superlattice [84, 55] and
those of a large circular quantum dot [62]. Also the current oscillations in a resonant
tunneling diode (RTD) [114] could be described in these terms. There is, however, an
ongoing discussion which effects can be treated using semiclassical methods, and which
are of genuine quantum origin (i. e. of higher than leading order in h).

The experimental observations of a mesoscopic channel with a central antidot molecule (a
dimer) have been reproduced by a quantum calculation [48]. The authors related the mea-
sured magnetoconductance features to inherent quantum effects. They therefore claimed
that the features are not accessible by semiclassical approximations. This motivates a
more detailed examination whether the observations of this system are really beyond the
limit of a semiclassical description.

A second reason for working out a semiclassical approximation of this structure is that
it has a mixed phase space. The bifurcations which occur in those systems lead to di-
vergencies in a leading-order h approximation. Much interest has been focused on the
implementation of bifurcations in semiclassical approximations (see for example Ref. [71]
and the references cited therein) and to track down their influence on experimental quan-
tum oscillations. In the RTD, for example, period-doubling bifurcations were found to
be responsible for a period doubling in the oscillations of the observed I-V curves [114].
The examination of the channel system will, as it exhibits bifurcations, contribute to this
discussion.

Finally, the quantum calculations for the channel were able to reproduce its main features.
They are, however, numerically so demanding that the dependence on the external vari-
ables could only be varied on a relatively coarse grid. For semiclassical calculations these
restrictions will be considerably less tight. Within such a description, even a fit of the
effective potential of the system could be feasible.

These three points make the channel system a real challenge to semiclassics.

7.1 The device

The device consists of electrostatic gates confining a high-mobility 2DEG in a GaAs/GaAlAs
heterostructure. The 2DEG was 82nm beneath the surface, its electron density was
ne ~ 3.47 x 10®m =2, and the mobility about 100m?V ~ts~!. The SEM picture of the

Figure 7.1: SEM photograph of
the gate structure. All gates were
contacted separately in a later
step. For the experiments dis-
cussed in this work, all channel
gates are connected to the com-
mon gate voltage Vy, and the two
antidots are biased with Vy.

gate structure is shown in Fig. 7.1. Four metallized gates are used to define a long, narrow
channel (5um x1pm). Two circular gates with a diameter of 0.2um at a distance of 0.2um
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from each other and from the channel gates define the antidot dimer. All gates are indivi-
dually contacted using a bridge technique. Details about the device and its fabrication are
presented in [33, 48, 34] and the references cited therein. All measurements were taken at
T =~ 100mK using standard low-excitation AC-techniques. The magnetic field was applied
perpendicular to the 2DEG.

7.2 Experimental results

This extremely versatile device was used for a variety of different experiments. The con-
ductance was examined for the channel (using all four channel gates) and the half channel
(using only the left channel gates). The antidot gate voltages were varied from the open
channel to complete pinch-off, and the magnetic field range examined stretches from zero
field to the high-field regime, where the quantum mechanical edge channel picture gets
accurate. Applying gate voltages that pinch off all but one constriction establishes a quan-
tum point contact (QPC) in the system. A lot of work was dedicated to the measurement
of the quantized conductance effects of these QPCs. The corresponding experimental
plateaus were also used to approximately scale the antidot voltages to an effective deple-
tion width of both the antidots and the channel walls. Details on these experiments can

be found in Refs. [34, 33, 35, 48, 47, 67].

For the experiments considered in this work, an identical voltage V;, which was held fixed,
was applied to all channel gates. Both antidot gates were given the same bias voltage
V4, which was the second parameter besides the magnetic field. The parameter range of
interest for this thesis corresponds to large antidots which overlap, so that the central
constriction is pinched off. The magnetic field is varied in the regime where the cyclotron
diameter of the classical electron motion is comparable with the channel width. In the
following, a short summary of the experimental findings relevant for this work will be
given.

Fig. 7.2(a) shows a typical magnetoconductance trace measured for large antidots. The
longitudinal conductance Gy, is near 4 conductance units e?/h for most field strengths,
dropping to approximately half the value in a sharp peak. The peak position corresponds to
the commensurability of the size of the antidot dimer and the classical cyclotron diameter
(marked with arrows)!. Note that this is completely analogous to the commensurability
peaks observed in antidot lattices [84, 55]. Fig. 7.2(b) gives a closeup of the peak (boxed
region in (a)). Superimposed on the peak, quantum oscillations with an approximately
constant period can be observed. This is studied in more detail in (c¢), where the spacings of
the neighboring conductance maxima are plotted as a function of B. The different curves
correspond to slightly different antidot voltages. The average spacing of the maxima is
nearly constant, only slightly decreasing with stronger fields. Superimposed on this smooth
trend random like variations are observed.

The unique design of the sample with individually contacted gates allows to change the
voltages of the antidots without affecting the other system properties. This was exploited
to measure the influence of the antidot diameter, which is directly related to the applied
voltage via the induced depletion width. Fig. 7.2(d) shows the influence of this parameter.
The points in the diagram correspond to the positions of the maximum of G, the solid

!The antidot size is determined by the lowest point of the saddle of the model potential (defined below
in Eq. (7.1), with sq = 2 and s4 = 1).
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Figure 7.2: Ezxperimental results. (a,b) Magnetoconductance trace for Vg = —1.44V.
The wertical arrows indicate the commensurability condition (see main text). (c)
Spacing of the conductance mazima for three gate voltages Vy = —1.42...—1.5 V. (d)
Dots correspond the positions of the conductance mazima in dependence of B and V.
Solid lines are to guide the eye. Dashed lines are calculated from the simple picture
described in Sec. 7.3.1.

lines are just to guide the eye. For smaller antidot voltage the maxima move to stronger
fields. They shift mostly parallel, interrupted by characteristic dislocations (boxes).

7.3 Theoretical description

7.3.1 Intuitive discussion

Some of the observed effects can immediately be understood on an intuitive level. A simple
picture will clarify which of the features need more detailed discussion.

Since the central constriction is pinched off in the observed regime of antidot voltages,
two QPCs are formed between the channel wall and the antidots. The first plateau of
quantized conduction leads to a conductance of e?/h per constriction and per spin, so
that the value of 4e%/h is expected if no interference takes place between the QPCs. If the
cyclotron diameter equals the channel width, the electrons passing the lower constriction
can be focused back through the upper constriction, so that the conductance falls to
2¢2/h. Using the simple model potential defined below in Eq. (7.1), one can estimate the
central peak position by assuming that the orbits are cyclotron-like, passing the saddle
of the potential at the lowest point. A rough estimate of the peak width is given by
the magnetic field strengths where cyclotron orbits pass the constriction at Fermi energy.
These estimates are compared to the experimental G, in Fig. 7.2(a). The magnitude of
the conductance, the position of the conductance dip (vertical arrow), and also its width
(horizontal arrow) are in quantitative agreement with this simple consideration.

The oscillations superimposed on the peak may be explained in analogy to the Aharonov-
Bohm (AB) effect. Identifying cyclotron orbits around the two central antidots with
the AB ring, equidistant maxima in B are expected. Subsequent maxima correspond in
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this picture to an additional flux quantum through the ring, so that their spacing only
depends on the ring area. The experimentally observed AB ~ 7mT (cf. Fig. 7.2(c))
corresponds to a diameter of the AB ring of = 0.86um. This is consistent with the device
dimensions extracted from the SEM photograph Fig. 7.1. Following this interpretation
further, the conductance maxima are expected to shift to larger B fields if the antidot
diameter is decreased. Taking the approximate scaling between V;; and depletion with s
from Kirczenow et al. [48] allows a quantitative calculation of the expected effect.? The
prediction of this simple model is shown in Fig. 7.2(d) with dashed lines. Considering the
crude approximations made, the agreement with the experiment is remarkable.?

The questions which remain to be answered by a more detailed analysis concern the
deviations from this simple behavior: (1) How does the spacing of the maxima change
with B? (2) Which mechanism is responsible for the dislocations of the maxima positions?

7.3.2 Quantum mechanical calculation

Kirczenow et al. [48] presented a quantum mechanical calculation using a transfer matrix
technique on a lattice. The model potential both for the channel and the antidot gates

was chosen? as

[ Ep[r/ag— (1+s)]* forr < ap(l+s)

Vir) = { 0 otherwise ’ (7.1)
with ag = 0.05um. Here r denotes the distance to the gate, and ag the length scale over
which the potential falls of from Epr to 0, i.e. the diffuseness of the potential. s is a
dimensionless parameter modeling the depletion width around the gates. For the gates
defining the channel, s = s. = 1 was used unless otherwise noticed. The conductance was
obtained from the Landauer formula g = (e2/h)Tr(tt"). The calculations were performed
for T' = 0 and neglecting impurity scattering. Therefore the quantum mechanical approach
misses a smoothing of the data due to temperature and impurity effects.

The results relevant for the further discussion are reproduced in Fig. 7.3. (a) shows the
magnetoconductance trace, (b) the variation of the maxima spacings, and (c) the posi-
tions of the maxima with varying antidot diameter. The quantum mechanical calculation
(heavy lines) qualitatively reproduces both the saturation of the peak spacings and the
maxima dislocations observed experimentally. Characteristic deviations are the shift of
the conductance peak to higher B-fields, and correspondingly a shift of the AB versus B

2To establish a relation between the antidot diameter and the cyclotron radius, the cyclotron orbit is
assumed to pass the constriction at a constant potential 0.6 Er. This parameter is adapted so that AB
matches the experiment. Note that AB can only be slightly modified by varying this parameter. The
slopes with changing sy are hardly affected at all.

*Note that Gould et al. [34] explained the shift of the conductance maxima by the reduced velocity of a
particle in the constriction, which also leads to a change of the action of an orbit. The simple AB picture,
however, explains already both the spacing of the maxima and their dependence on the antidot diameter.
Therefore in this context no additional mechanism has to be introduced.

4The electrostatic potential induced by the gates is relatively smooth. The effective single-particle
potential, however, gets steeper with increasing particle number. This has been shown in self-consistent
calculations for quantum dots [24] and is analogous to the situation in three-dimensional metal clusters [32,
89]. In the limit of high electron densities, the effective potential is box-like. This ensures that the applied
gate voltage only determines the depletion region of the gate, whereas the potential steepness depends
mainly on the electron density. For the electron densities realized in the experiment, the choice of the
model potential consisting of a flat central region with steep walls is justified.
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Figure 7.3:  Quantum results. (a) Magnetoconductance. Thick: QM for sq = 2.05,
thin: experiment with V, = —1.44 V. The arrow indicates the commensurability
condition in the model potential. (b) Spacing of the mazxima for s4 = 2.05. The thin
lines correspond to the experimental curves of Fig. 7.2. (c) Positions of the mazima
in dependence of B and sq. Small bozes indicate dislocations, the large box gives the
approzimate range of the corresponding experimental data of Fig. 7.2.

curve. The lack of quantitative agreement could be due to the model potential, whose
parameters were not adapted for a perfect fit. Note, however, that the central position
of the peak does not coincide with the commensurability condition of the model potential
(vertical arrow). The origin of this deviation is unclear.

7.4 Semiclassical description of the conductance

The initial motivation for a semiclassical analysis of this system was to find out whether
the variation of the maxima spacings and the dislocations with varying antidot diameter
are genuine quantum effects, i. e., of higher than leading order in A. This was claimed in
Refs. [48, 34] with two arguments: (1) All classical orbits found by the authors show a
dependence of the action S on the magnetic field B which implies a decrease of AB with
larger B. This contradicts the experimental results. (2) The experiment is performed in
the regime of the first plateau of quantized conduction. With just one mode transmitting,
a semiclassical approach seems questionable to the authors.

In this chapter, the semiclassical description of the magnetoconductance for the channel
system is derived. The results are compared to the quantum mechanical data as well
as to the experimental findings. It is discussed why the semiclassical description is — in
contrast to the above arguments — able to explain all the experimentally observed features.
Thereafter, the lower computational effort of the semiclassical ansatz is used to fit the
model potential parameters to the experiment. The close relation of the trace formula to
the classical dynamics of the system finally allows to explain all effects within a simple,
intuitive picture.
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7.4.1 Landauer-Biuttiker or Kubo?

Although the quantum mechanical results of the Landauer-Biittiker and the Kubo for-
malism have shown to be identical [12], the appropriate formulation for a semiclassical
approximation has to be chosen.

The Landauer-Biittiker approach [54, 21] is valid for completely phase-coherent devices
connected to leads which serve as electron reservoirs. The conductance of such a system can
be expressed in terms of the transmission coefficients between all the contact modes. This
formalism holds for two-terminal measurements as well as for configurations including more
contacts. The channel with central antidots consists of a phase-coherent “active region”
(the environment of the antidots), connected by “leads” (the channel itself). Since these
leads are not phase coherent (their lengths exceed the phase coherence length), they cannot
be considered as part of the device. They are not in thermal equilibrium,” so that they
are no contacts in the sense of the Landauer-Biittiker formalism, either. This approach is
therefore not applicable to the present system.

The Kubo approach describes the conductivities of homogeneous, macroscopic samples.
Since the channel is neither homogeneous nor macroscopic, it is not reasonable to define
a conductivity for this system. Nevertheless, the Kubo formalism is applicable. This be-
comes clear considering a hypothetic system, namely a 2D lattice with the channel system
as its elementary cell. This setup is equivalent to the antidot lattices regularly treated
within Kubo formalism. The conductivities which are calculated from the Kubo formula
refer to the macroscopic dimensions of the (hypothetical) lattice. Since the vertically se-
parated elementary cells can not interfere because of the channel walls, and horizontally
separated antidot dimers are further apart as ¢g, the classical scaling laws hold down to
a single elementary cell of the lattice, i.e. can be applied to the individual channel with
a pair of antidots. The conductance of the individual channel is therefore given by the
conductivity in connection with the size of the elementary cell. Since the resistance of the
channel itself is negligible, the relevant size is given by the active region, i.e. the region
around the antidots.

In the following, the semiclassical version of the Kubo transport formula Eq. (5.4) will be
applied to the channel with antidots.

7.4.2 The model potential

To allow a comparison of the results, the quantum mechanical model potential is also used
for the semiclassical approach. Numerical stability, however, requires® smooth second
derivatives of V(r). The model potential Eq. (7.1) has a discontinuous second deriva-
tive between the flat bottom and the quadratic wall. To remove this, a cubic spline is
introduced in the transition region. The total potential is given by

v (|7 — s1)2 + & [7|< (s1— A/2)
T =~ =) (51— A/2) <|FI< (s1+4/2) (72)
0 (s1+A/2) <|F|

This is especially clear for high magnetic fields where the current is carried by edge states. The states
at the opposite edges of the channel have different Fermi energies in this regime.

5This is due to the numerical scheme implemented, which simultaneously integrates the stability matrix.
It will be presented in appendix A.
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with 7 = r/ag, s1 = 1+ s and A = s3 — s. Throughout this chapter, A = 0.005 is used.
This results in a difference to the pure parabolic case smaller than 2.1 * 107 Ep, which
is negligible. The potential Eq. (7.2) is illustrated in Fig. 7.4. Unless otherwise noticed,

E : IRV, Figure 7.4: Left: Model
potential used for the
semiclassical calcula-
tions.  Right: Closeup

F ) — > of the transition region.
\N_,‘/ 1 Cubic spline correction
e - \// <« A2—> N2> rla, (solid) and the piecewise

0 s stl  rla, d stl parabolic case (dashed).

Gate

the parameters are identical to those of the quantum calculation, i.e. ag = 0.05um and
s = s. = 1 for the gates defining the channel. The depletion width of the antidot gates s4
was varied between 1.5 and 2.2. Following the approximated relation between s; and V, in
Ref. [48], this corresponds to an effective antidot diameter between 0.35um and 0.42um.

7.4.3 The periodic orbits

Except for a few special cases, the periodic orbits of a system with smooth potential can
only be found numerically. This stage involves the main numerical effort of a semiclassical
approximation, so that some care reducing the computation time is indicated. In order
not to interrupt the discussion, the corresponding technical (though important) details
are given in appendix A. The central idea is to implement a fast numerical differential
equation solver to integrate simultaneously the classical equations of motion (EOM) and
a reduced version of the monodromy matrix, the (2D) stability matrix M. Starting with
random initial conditions, a two-dimensional Newton-Raphson iteration using the infor-
mation provided by M converges to the periodic orbits. These are followed with varying
B-field and antidot diameter using an adaptive extrapolation scheme.

Although the potential is simple and
symmetric, it gives rise to a large va-
riety of distinct periodic orbits, many
of them breaking the symmetry of
the system. Some typical examples
are shown in Fig. 7.5. According to
Sec. 3.2, finite temperature and impu-
rity scattering leads to a strong damp-
ing of the contributions of longer pe-
riodic orbits to the trace sum. Sys-
tems like the disk billiard (see chap-
ter 4) or antidot lattices [63, 41] only
have a small number of short periodic
orbits. In these cases the evaluation of
the semiclassical Kubo formula is espe-
cially easy, since only a few contributions are significant. In the channel, unfortunately,
the lengths of the orbits are nearly identical, so that much more orbits contribute to the
trace sum.

Figure 7.5: Sixz typical classical periodic orbits in the
channel system. Note that there are orbits breaking the
symmetries of the potential.

Most of the orbits do not exist over the whole parameter range, appearing and disappearing
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in orbit bifurcations. Fig. 7.6 shows the typical behavior of Tr(M ) of some orbits with
varying magnetic field. The structure of the classical dynamics is astonishingly rich,

showing bifurcations (which correspond to Tr(M) = 2) of various types and — when varying
the antidot diameter s; also of higher codimension. The number of orbits increases
rapidly with smaller antidot diameter (i.e., wider constriction).

The Poincaré plot of the chan-
nel is given in Fig. 7.7. The
leftmost picture shows the sta-
bility island of a primitive or-
bit, surrounded by chains of
stable and unstable orbits of
higher repetition number, in
the “sea of chaos”. Varying
the magnetic field drives the
system through a bifurcation.
The central stable orbit be-
comes unstable, creating a pair
of new stable orbits (rightmost
picture). This is the typical
phase space picture of a period
doubling (or pitchfork) bifur-
cation. .

By checking Tr(M) as in
Fig. 7.6, it was ensured that
no orbit was missed at a bi-
furcation. All together, over
60 orbits (not counting the
symmetry-related ones) have
been included in the calcula-
tions.  All relevant classical
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Figure 7.6:  The dependence of Tr(M) of some periodic orbits

on B and sq. The crossings of the line Tr(M = 2) indicate
bifurcations, where new orbits appear. The number of orbits
increases rapidly with smaller antidot diameter sq. The labels
of the orbits refer to a classification in three generations, which
will be used in Sec. 7.6.

properties, namely the actions, periods, stabilities, velocity-velocity correlation functions,
Maslov indices and degeneracies were determined numerically. The technical details are

presented in appendix A.2.

B[T]=0.21153| 0.21157

0.21160 21 021167 | 021170

Figure 7.7 Poincaré plot of a small phase-space region for sq = 1.9 for varying
B. From left to right: a stable orbit becomes unstable, creating two new stable orbits.
The stable orbits are surrounded by chains of stable and unstable orbits with higher
repetition number, which is typical for systems with mized phase space.
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7.4.4 Evaluating the trace formula

As discussed in Sec. 2.4, leading-order A approximations diverge at bifurcations. This
spurious behavior can be removed by a local higher-order expansion. To ensure both the
correct local properties at the bifurcation and the (Gutzwiller-) limit far from it, uniform
approximations can be used.

Orbit traces like in Fig. 7.6 allow the identification of the types of bifurcations present in
the channel system. Varying the magnetic field both tangent and period doubling bifurca-
tions occur. If additionally the antidot diameter is changed, bifurcations of codimension
2 show up as well. The explicit formulas for the uniform approximation of tangent bifur-
cations are given in appendix B by Egs. (B.7) and (B.8). Eq. (B.15) applies to pitchfork
bifurcations. The next section deals with the implications that these expressions do not
only contain information about the classical periodic orbits, but also include the contri-
bution of ghost orbits, i.e., analytic continuations of orbits beyond the regime where they
classically exist.

7.4.4.1 Numerical implementation of the uniform approximation

The formulas for the uniform bifurcation cannot be applied directly to the system con-
sidered here. First, the channel has discrete symmetries, whereas these formulas apply
to the generic, symmetry-free case. The discrete symmetry modifies the behavior of the
period doubling bifurcation. Its generic form consists of a central orbit which changes
its stability (from stable to unstable or vice versa), splitting off a new orbit with twice
the period. In the channel system, in contrast, two symmetry-related orbits with the
simple period split off (cf. Fig. 7.7 for a Poincaré plot). The total Gutzwiller amplitudes,
however, are identical for the symmetric and the generic situation. The factor 2 from the
double period in the generic case is replaced by the degeneracy factor 2 stemming from the
symmetry. Including the degeneracies correctly, the uniform approximation of Schomerus
and Sieber can be applied to the channel system.

The second problem concerns the numerical implementation of the uniform approximation.
The information about the ghost orbits which contribute to the analytical formulation is
not available if the classical equations of motion are integrated numerically. This prevents
the application of the uniform approximation to the complex side of the bifurcation. This
work suggest a modified scheme, which retains the correct limiting cases, but requires
only information about real orbits. It consists of a local approximation at the bifurcation,
which is adapted to both the local form of the uniform approximation and the limit on
the far complex side (which is simply the Gutzwiller contribution of the remaining real
orbits). The technical details of the procedure are presented in Appendix B.

7.4.4.2 The influence of the bifurcations

As can be deduced from the analytical local form, the contributions of the orbits engaged
in a bifurcation are increased by a factor h~0. The exponent depends on the type of the
bifurcation; for the tangent bifurcation 6 = 1/6, and for the period doubling bifurcation
d = 1/4 [70]. This shows that bifurcations are of leading order in % and dominate in
the semiclassical limit 2/S — 0 (with S being the action of a typical periodic orbit in
the system). Therefore it has to be checked whether the bifurcations have an increased
influence on the conductance of the channel system.
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Fig. 7.8(a) shows the trace of the (reduced) stability matrix Tr(M) of three periodic orbits
taking part in two successive bifurcations (where Tr(M) = 2) under variation of the mag-
netic field strength B. At B =~ 0.21 a tangent bifurcation, and at B = 0.225 a pitchfork

2000 ‘(é)‘ |

noe
noan
'Inlln:”," "

—— B[T] 021

Figure 7.8: (a) Tr(M) (note the nonlinear scale!) versus magnetic field B for three
characteristic periodic orbits. (b) Contribution of the three orbits to §Gy.; dotted line:
semiclassical Kubo formula, solid line: uniform approxzimation. (c) same as (b) but
for a system with 10 times larger actions. The right box illustrates the orbits engaged
in the bifurcations. Note the tiny differences to orbit 2.

bifurcation shows up. Fig. 7.8(b) gives the contribution to the conductance of the orbits
engaged in the bifurcations. The dotted line corresponds to the result of the semiclassical
Kubo formula Eq. (5.4). The amplitudes are diverging at the bifurcations. The uniform
approximation (solid line) removes, as expected, the divergences. Fig. 7.8(c) represents
the corresponding data for a system scaled to have 10 times larger actions, thus being
closer to the semiclassical limit. Even then, the amplitudes of the uniform approximation
are nearly constant over the bifurcations. This shows that the bifurcations have no locally
dominant influence on the conductance of the present system.

Having established this result, the semiclassical approximation can be further simplified.
Whereas for individual orbits a uniform treatment of the bifurcations is vital, their influ-
ence becomes smaller if a larger number of orbits is included. This is demonstrated in
Fig. 7.9, where dG, has been calculated including all relevant (~ 60) periodic orbits. The
thin line gives the standard Gutzwiller-like approach in leading order in A according to
Eq. (5.4). The sharp divergences correspond to bifurcations of various orbits included in
the trace sum. The difference to the uniform result” (solid) is much less pronounced than
in Fig. 7.8.

The influence of higher-order & corrections on the result of Gutzwiller-like trace formulae
has been discussed in Sec. 3.3. There it was pointed out that i corrections do not only

"The numerical uniform approximation was additionally treated with the folding procedure of Sec. 3.3.2
to handle the spurious divergencies stemming from the bifurcations with codimension 2. Those were not
included in the numerical uniform approximation.
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Figure 7.9: 6Gyy for sq = 1.88 using the semiclassical Kubo formula either directly
(thin) or with additional folding over B (dashed). The uniform approximation corre-
sponds to the heavy solid line. Maxima are marked with diamonds (folded Kubo) and
triangles (uniform,).

lead to additional terms in the trace sum, but also require an adaption of the smoothing
scheme. This applies, as pointed out there, also to bifurcations. The correct inclusion of
finite temperature and impurity scattering is possible using the folding approach presented
in Sec. 3.3.2. This procedure implements the smoothing in higher order in £, but it does not
include higher-order h terms to the trace formula. Comparing the uniform approximation
with the results of the semiclassical Kubo formula in combination with the folding approach
therefore permits an examination of the effects of the higher-order A terms introduced by
the bifurcations.

The dashed line in Fig. 7.9 shows the result of the folding approach. It removes the
spurious divergencies at the bifurcations, and the remaining discrepancy to the uniform
treatment is small. This is in strong contrast to Fig. 7.8, where only a few orbits are
included. The semiclassical result therefore depends only little on the correct treatment of
the bifurcations if many orbits are included. From this observation it can be deduced that
the higher-order % corrections from the different bifurcations interfere mostly destructively.
This effect has already been observed in the study of the disk billiard in chapter 4.

In particular, the influence of the bifurcations on the maximum positions (marked by
diamonds and triangles in Fig. 7.9) is small. Therefore the semiclassical description can
be further simplified by using the trace formula Eq. (5.4) with additional convolution over
B. This will be done in the following.

7.5 Semiclassical results

The discussion of the simple Aharonov-Bohm (AB) picture in Sec. 7.3.1 has shown that the
observations which still need to be explained are the dependence of the maximum spacings
on B, and the dislocations of the maxima positions with varying antidot diameter. This
will be discussed in Sec. 7.5.3 and 7.5.4, respectively. Before that, a closer look at the
experimental results will be taken.

7.5.1 Fourier components of the quantum oscillations

The semiclassical trace formula Eq. 5.4 has the structure of a Fourier sum, with the
periodic orbits as individual Fourier components. If the semiclassical approach is justified
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and a formula of this type describes the quantum oscillations, the traces of the classical
orbits should be visible in a Fourier transform of the experimental data. This technique
has evolved to a standard approach for extracting the influence of the classical phase
space structure on quantum oscillations. Prominent calculations of this type include the
Rydberg spectrum of hydrogen [92] and of larger atoms [52]. This powerful method shall
now be applied to the channel system in order to check whether the quantum oscillations
show indications for the influence of classical orbits.

For such an analysis to be rigidly valid,
a scaling law for the actions of the
periodic orbits must hold. The ob-
served conductance oscillations resem-
ble Aharonov-Bohm oscillations. The
action of the corresponding orbits, the
cyclotron orbits, scales like S = kB.
Taking the Fourier transform of Gy
with respect to B, orbits with this scal-
ing property show up as sharp peaks.
Fig. 7.10 shows Fourier spectra® of the ‘ ‘ ‘ ‘
experimental data with respect to B 4 5 6 7

for different antidot voltages. For large AB[mT] —
antidots (large negative voltage on the Figure 7.10: Fourier transform of the experimen-
antidot gates) one dominant frequency tal data in the range of the commensurability peak
can be observed. With decreasing an- B =0...0.5 T. For easier comparison with Figs. 7.2
tidot diameter, the corresponding peak and 7.13, the frequency is given in units of the cor-
shrinks and finally disappears. Simul- responding mazima spacing. Offset for clarity.
taneously, a new peak develops at smaller AB. For V, ~ —1.24 V both peaks have
approximately equal strength. With decreasing antidot diameter, both peaks move to
larger AB.

The width of the peaks in Fig. 7.10 is not restricted by the finite resolution of the Fourier
transform. This does not necessarily contradict a semiclassical interpretation. The broad-
ening might be caused by orbits whose action scales only approximately like S = kB. The
widths of the peaks can also be explained by many orbits which contribute, each with a
slightly different frequency. The Fourier data therefore neither gives a clear indication of
periodic orbits contributing to the quantum oscillation, nor does it exclude this possibility.

Fourier component [arb.u.] -

=
o

The oscillations in Gy seen in experiment (compare to Fig. 7.2) are nearly sinusoidal, so
that one might expect that a single periodic orbit is responsible for the effect. The above
Fourier analysis of the data shows, however, that at least two orbits contribute to the
quantum oscillations.

7.5.2 The conductance variation with B

Fig. 7.11 compares the semiclassical result for the oscillating part of the conductance with
the experimental? data.

8To clearly separate out the regime of interest around the commensurability peak, a triangular window
function was used. The magnetic field range considered was B =0...0.5 T.

9To extract the oscillating part of the conductance from the the experimental data, the smooth part
was calculated by convolution with a Gaussian with ¢ = 0.004 T. The difference to the original data gives
0Gag-
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The semiclassical result shows — apart
from small shift towards higher mag-
netic fields — qualitatively the same
behavior as the experimental data.
Although using an identical model
potential, this shift is considerably
smaller than for the quantum calcu-
lation (compare to Fig. 7.3). The
origin of this discrepancy between
the two theoretical descriptions is un-
clear. Please note in this context
. . that the quantum calculation in con-
026 B[T]- trast to the semiclassical approach
does not reproduce the correct po-
sition of the classical commensura-

0G[arb.u.] -

0.18 0.22

Figure 7.11:  Semiclassical (solid) and experimental
data (dasljbe.d) for 6Gm The arrows md@ate the com- bility peak. This is clear compar-
mensurability condition; offset for clarity. (a) Large .

antidot diameter. Semiclassics: sq = 2.06, experiment: 18 Figs. 7.3 and 7.11, where the
V, = —1.48 V. (b) Intermediate antidot diameter. commensurability conditions are indi-
Semiclassics: sq = 1.91, experiment: V, = —1.38 V. cated by vertical arrows.

The numerical effort involved in the semiclassical calculation is considerably smaller than
for the quantum approach. It is low enough to make a fit of the model potential to the
experimental findings feasible. For this task three parameters of the model system have
been varied, namely the overall system size and the depletion widths of the channel and
antidot gates, s. and sg4. Since the classical dynamics are size-independent, the scaling of
the system with a factor x in coordinate space can simply be performed by replacing in
Eq. (5.4) the action S with xS and the magnetic field B with x !B. To change s, the
periodic orbits have to be adapted to the new potential using the same scheme already
employed when varying B or s4 (see appendix A.3).

Fig. (7.12) shows the semiclassical conductance for s, = 1.5 and sq = 1.5 for a system
scaled with £ = 1.075, i.e. sp = 0.05375 pm. This size is still in agreement with the
SEM picture Fig. 7.1. The adapted model potential removes the mismatch between the
semiclassical and the experimental findings, resulting in a quantitative!? agreement of the
semiclassical G, with the experimental data.

N

g Figure 7.12:

] Adapting  the  parame-

= ters of the model po-

g tential. Solid:  experi-
ment for V, = —1.50V,

dashed:  semiclassics for
s = 1.5, s4q = 1.5, and
so = 0.05375um.

0.15 0.20 025  B[T]-

The following calculations return to the parameters of the quantum approach in order to
have the two theoretical methods on the same basis.

ONote that the amplitudes are, as usual in semiclassical calculations, adapted.
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7.5.3 The maximum spacing

Fig. 7.13 compares the variation of
the maximum spacings of the semi-
classical description (heavy lines and
filled symbols) to the experimental
data!! (thin lines and open sym-
bols). For large (a) as well as for in-
termediate antidot diameter (b) the
average spacing of the maxima is
nearly constant in B, only slightly
decreasing for stronger fields. This is
clearly reproduced by the semiclassi-
cal approach. The mean spacing is —
both experimentally and in the semi-
classical description — unaffected by
changes of the antidot diameter. The
maxima spacings, however, do not
vary smoothly, but show random-like
variations for small changes in either
B or s4. Large antidots (Fig. 7.13(a))
give rise to a more regular pat-
tern than smaller antidot diameters
(Fig. 7.13(b)). The amount of vari-
ation is correctly reproduced by the
semiclassical description. The quan-
tum calculation in Fig. 7.3(b) shows

6 1 1
0.18 0.20 0.22

B[IT] N

Figure 7.13:  The spacing of the mazima in dependence

of B. Thin lines, open symbols: experiment. Heavy
lines, filled symbols: semiclassics. (a) Large antidot

diameters. FEzrperiment: V, = —1.42...—-1.5 V, semi-
classics: sq = 2.05...2.07. (b) Medium antidot diame-
ters. Experiment: V, = —1.3...-1.36 V, semiclassics:

sq = 1.88...1.92.

less agreement with the experimental data. This is again due to the shift of the quantum
Gz to larger magnetic fields, which was already observed in Sec. 7.3.2.

The good agreement of the semiclassical prediction of the maximum spacings with the
experimental findings is surprising, since the contributions of the individual orbits show a
different behavior. This is illustrated in Fig. 7.14. All individual orbits (thin lines) show a

strong decrease of AB with stronger
fields. This does not agree with the
experimental findings for the spacing
(heavy lines and symbols). This ob-
servation was one of the arguments
of Ref. [48], leading to the conclu-
sion that the magnetoconductance of
the channel is not accessible to semi-
classical approximations. The solu-
tion to this apparent contradiction is
that in the present system not a few
orbits dominate the quantum oscilla-
tions, but many of them contribute
with comparable amplitudes, actions

AB[MT] -

0.26

0.20

6
0.18 B[T]
Figure 7.14:  Thick lines and symbols: Experimental
mazxima spacings as in Fig. 7.13(a). Thin lines: Max-
ima spacings from the contributions of some individual
orbits for Sq = 2.06.

""The maxima positions were determined from the experimental §B. A cubic spline fit was used to
interpolate between the measured points. The latter were taken each 0.5 mT.
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and periods. Varying the magnetic field, the individual orbits change their AB. Simultane-
ously, the orbit stabilities (and thus the relative amplitudes) are affected. In combination,
the two effects lead to the weak variation of AB plotted in Fig. 7.13.

The semiclassical analysis is, as depicted in Fig. 7.13, also able to reproduce the amount
of short-range variation of the maximum spacings. This shows that the effect is not
due to experimental noise, but reflects the physical properties of the system. The basic
mechanism can easily be understood within the semiclassical picture. As pointed out
above, the influence of the individual orbits varies strongly with both magnetic field and
antidot diameter. Small changes in these parameters therefore can lead to significant
shifts of the maxima positions. The more the orbits differ geometrically, the larger are the
changes in § B induced by tiny changes of the parameters. For larger antidot diameter, i. e.
narrow constrictions, the classical orbits get more and more similar to each other. This
nicely explains the increased short-range variations of d B for smaller antidots.

Both the sinusoidal form of the experimental §G,, and the Fourier analysis were consis-
tent with the picture that just a few orbits contribute significantly to the trace sum. The
analysis of the maxima spacings, however, shows that the idea to trace down the mag-
netoconductance features to the properties of one or two single orbits must be rejected.
The observed behavior depends on the subtle interplay between changes in the classical
stabilities and in the actions of a large number of similar orbits.

7.5.4 Variation of the antidot diameter

The second question formulated in Sec. 7.3.1 concerns the dislocations which occur in the
positions of the conductance maxima when varying the antidot diameter. Fig. 7.15(a)
shows the predictions of the semiclassical approach. The points represent the calculated
maxima, positions, the thin lines are just a guide for the eye. The semiclassical description
clearly reproduces the dislocations (small boxes). This shows that the dislocations are no
genuine quantum effect, but accessible by semiclassic methods.

(a) / Figure 7.15: (a) Result of the
0.26 st / semiclassical analysis for the posi-
....... %/ tions of the conductance mazima
/ with varying magnetic field B and

B[T]1

0.24

antidot diameter sq (dots). Thin
lines connecting the points are just
to guide the eye. The correspond-

‘ ‘ / ing experimental data is shown in
02 /f:7’* ’ — Fig. 7.2. The gray-shaded lines cor-
% o] | . / respond to loci of orbit bifurcations

‘ N T »

/j, k. " /

0181 .« (see Sec. 7.6, p. 86). (b) Local be-

/M/»”/'//’/ ) havior around a dislocation. Lines:

0.22F

0.16 | J semiclassical result of the dashed
-,/// box in (a), points: experimental
‘ ‘ ‘ ‘ data around the dislocation marked

22 21 20 19 Sq— with the dashed box in Fig. 7.2.

Fig. 7.15(b) illustrates the local behavior around a dislocation. The lines correspond to
the semiclassical result (dashed box in Fig. 7.2(a)), the points give the experimental data
of Fig. 7.2(d). The values of B and s; have been shifted slightly, but no rescaling was
used. The excellent agreement shows that the local behavior at a bifurcation is not only
qualitatively, but even quantitatively explained within the the semiclassical description.
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7.6 Semiclassical interpretation

The last section confirmed that the semiclassical approach is able to explain all observed
magnetoconductance features of the channel with central antidots. The semiclassical tech-
nique has two main advantages compared to quantum calculations. The first benefit, the
reduced numerical effort, has already been exploited above. It was therefore possible to
calculate the data on a fine grid, and even to adapt the system parameters. Such a task
is in principle not impossible in a quantum approach, but frequently the numerical effort
is prohibitive.

The second advantage of semiclassical descriptions is that they express quantum oscilla-
tions in terms of classical quantities. Since human intuition is strongly based on classical
physics, the insight gained in the nature of these interference effects is enlarged by a
semiclassical description. The resulting intuitive picture might also be helpful for the
development of new devices, serving as a guiding line how to design a sample to achieve
certain desired properties. This section exploits the close relation of the trace formula
to the classical dynamics of the system to give an intuitive picture of the origin of the
maxima dislocations.

The different periodic orbits of the system have different degrees of similarity. A reasonable
way of splitting them in groups is to consider always those orbits together which are closely
related, i.e., have bifurcations with each other in the parameter range observed. These
orbit, groups will be called families'?. Fig. 7.6 shows the traces of the orbits belonging to
such a family, illustrating their close internal relation.

To understand the nature of the effect leading to the dislocations, a model system with
only the orbits of this family will be considered for the moment. In Fig. 7.16(c) the squares
give the positions of the conductance maxima for this model system. This reduced system
already shows all the characteristic features observed in the experiment (see Fig. 7.2).
It especially exhibits the dislocations of the conductance maxima (boxes) which are so
far reproduced, but unexplained. As illustrated in Fig. 7.6, the members of the family
can be divided into three generations, depending on whether an orbit is offspring of the
orbit 1, 2 or 3. These are, for obvious reasons, called grandparents, parents, and children
generation. All members within a generation behave nearly identical, thus justifying the
classification. In Fig. 7.16(a) and (b) the maxima of the contributions of the grandparent
and the children generation to the conductance is shown. All generations'® induce nearly
equidistant maxima in B with a constant shift to larger B if the antidot diameter is
reduced. This in complete agreement with the simple Aharonov-Bohm picture discussed
in Sec. 7.3.1. The behavior of the individual generations is therefore readily interpreted in
terms of their geometrical properties. This implies, that the contributions of the individual
generation do not show dislocations. These must be due to the interplay of the different
generations.

The children have a larger semiclassical amplitude than the grandparents. Therefore the
maxima of the total Gz (i.e. including all generations) follow the childrens’ maxima
where the latter exist. Otherwise, the maximum positions of the complete family agree
with those of the grandparents. This is confirmed by Fig. 7.16(d). The parents’ influence

2These families are not to be confused with the families of degenerate orbits occurring in systems with
continuous symmetries.

'3This holds also for the parents generation. It is is not shown separately, since its contribution is
negligible throughout.
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Figure 7.16: The positions of the conductance mazima due to different orbit
generations of the family shown in Fig. 7.6: (a) grandparents, (b) children, (c) all
generations. The parents’ contribution is not shown separately, since it is negligible.
(d) Blow-up from (a)-(c). The maxima of the total §Gy,. (squares) follow the mazima
of the children (crosses) where these exist, and those of the grandparents (triangles)
otherwise. Heavy lines indicate the loci of bifurcations in the (sq, B) plane.

was found to be negligible throughout. The geometric differences between grandparents
and children orbits lead to different dependencies on the antidot diameter and the mag-
netic field strengths. Therefore the generations show different maxima spacings as well as
different slopes of the maxima with varying s4. Neither the slopes nor the spacings match
along the generation boundaries. This is similar to growing two materials with different
lattice constants onto each other. The resulting lattice defects are the equivalent of the
dislocations observed.

From this interpretation, further predictions can be deduced: (i) Scaling the system does
not affect the classical dynamics, so that the dislocations move along the (universal) bi-
furcation lines. (i7) Assuming a linear dependence of the action difference AS between
children and grandparents on sy, the dislocations are equally spaced in sg. (#i7) Scal-
ing S with a factor x,'* the distances between dislocations scale according to Asg o k.
These predictions are checked in Fig. 7.17, where the maxima positions of the system of
Fig. 7.16(d), scaled with a factor of 2 (a) and 3 (b), are shown. The dislocations move
indeed on the bifurcation line. They occur approximately at the predicted values of sy,
which are marked by pins.

In the full calculation with over 60 orbits, the various families with their bifurcation
structures (gray lines in Fig. 7.15(c)) are superimposed. Only those dislocations survive
for which the above model scenario is locally dominating and no further orbits interfere.
As a result, some of the dislocations disappear, some are slightly shifted in the (sq4, B)

This corresponds to scaling the size with x and the magnetic field with .
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Figure 7.17: The system of Fig. 7.16(d), scaled by a factor of k =2 (a) and k = 3
(b). The thin lines are guide to the eye. The magnetic field is scaled with k to simplify
the comparison with Fig. 7.16. The bifurcation lines (and thus the region where the
children exits) are indicated by thick lines. Dislocations are marked with boxes. The
pins correspond to the prediction of the location of the dislocations given in the main
text.

plane. Therefore, no unique one-to-one relation between dislocations and bifurcations can
be established. Nevertheless, the qualitative pattern remains the same.

This interpretation suggests that there are
two orbit groups with different behaviors
present, their interplay being responsible for
the dislocations of the maxima positions ob-
served. This is in complete agreement with
the Fourier analysis of the experimental data
shown in Fig. 7.10, which shows two dis-
tinct peaks. The Fourier transform of the
semiclassical data for the individual orbits
generations is given in Fig. 7.18. For large
antidot diameter the parents (dashed) have 4 5 6 7

dominant Fourier components, as they ex- AB[mT] -
ist in a much larger region in B compared Figure 7.18:  The Fourier transform of the
to the children (solid). For smaller antidots, con.tr'zbutz.ons of the zr‘zdwzdual orbit families.
the region where children orbits exist rapidly Solid: children, dashed: parents.

grows, and due to their large semiclassical amplitude they soon dominate the Fourier spec-
trum. In the intermediate regime, two separate peaks can be observed. This is the same
behavior found in the Fourier analysis of the experimental data in Fig. 7.10, where a
peak at 0 B =~ 7TmT vanished for smaller antidots, and a new peak occurred. The Fourier
analysis of the experimental data therefore supports the interpretation that the observed
structure in the maxima positions of the conductance is due to the interplay between two
orbit generations.

Fourier component [arb.u.] -

10

7.7 Summary

In summary, the semiclassical description successfully reproduces all experimentally ob-
served features of the magnetoconductance of a mesoscopic channel with antidots. It was
additionally demonstrated that the low numerical demands of the semiclassical approxi-
mation make a fit of the experimental potential possible.
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The variations in the maxima spacings could by reproduced in every respect. The semi-
classical approach yields the correct value for AB, together with the average behavior
with varying field and antidot diameter. Furthermore, the predictions of the amount of
short-range variation of AB in dependence of B and s; agree with the experimental find-
ings. The semiclassical picture confirms that these variations are not due to experimental
inaccuracies, but reflect system properties.

The dislocations of the conductance maxima as functions of magnetic field B and antidot
diameter s; have been shown to be related to bifurcations of the leading classical periodic
orbits of the system. The dislocations are due to the fact that the bifurcations define
the border lines between regimes of different predominant orbit generations, leading to
different dependences of the conductance maxima on B and s4. This induces the observed
dislocations of the maximum positions, analogously to lattice defects at interfaces. As the
classical dynamics are not affected by a rescaling of the system, the scaling behavior of
the dislocations can be easily understood in the semiclassical approach.

These results disprove previous arguments claiming the channel system exhibits inherent
quantum features. These arguments were based on the discussion of the semiclassical
contributions of individual orbits. The semiclassical picture proposed here, in contrast,
claims that the subtle interplay between many different orbits, i.e. the variations in all
their stabilities and actions under the change of the system parameters, is responsible for
the observed magnetoconductance features.

The way how bifurcations affect the quantum oscillations in the channel system is different
from previously reported mechanisms. Using a numerical version of uniform approxima-
tions, the bifurcations of the system were shown to have no locally enhanced influence on
the conductance. In super-deformed nuclei [10] or elliptic billiards [57], in contrast, period
doubling orbit bifurcations influence the quantum shell structure due to their dominant
order in 1/h. The influence of the bifurcations in the present system is also different from
the one reported for the resonant tunneling diode [114]. There, the bifurcations lead to a
doubling of the period, whereas in the system considered here the periods of all relevant
orbits are approximately constant. Furthermore, in the resonant tunneling diode only a
few orbits were found to be important, whereas the present system is dominated by a
much larger number of orbits with nearly identical actions, periods and amplitudes.



Chapter 8

Conclusion

This work investigated the applicability of semiclassical approzimations to mesoscopic
systems. The different problems analyzed are grouped around three setups: two simple
model systems and a more complicated structure realized in experiment. The theo-
retical studies, namely the calculation of the level density of the disk billiard and the
conductivity tensor of the free 2DEG, analyzed the influence of various higher-order
h contributions to the semiclassical description. It was shown that only a few of these
corrections are relevant. The magnetoconductance of the experimental system  a
mesoscopic channel with antidots — was successfully described within leading order
of h. All observed features were quantitatively and qualitatively reproduced, and an
intuitive picture of their origin could be given.
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Working on semiclassical techniques, i. e. approximations of the quantum mechanical for-
malism to leading order in A, can have different foci. The interest can be directed towards
the correct description of the properties of a specific system. This includes all ques-
tions relevant for (experimental) applications. Another motivation is to gain increased
theoretical insight in semiclassical techniques. In this context, the limits of such an ap-
proximation are considered and formal problems of the approach are solved.

For the present work, these two aspects have been equally important. This conclusion
will therefore summarize the main results twice. First, an overview of the findings for
the specific systems is given (Sec. 8.1), before the results are collected according to theo-
retical criteria (Sec. 8.2 and 8.3). The dissertation closes with suggestions for further
investigations.

8.1 The systems investigated

The semiclassical approximation was shown to be a well-adapted tool for all the meso-
scopic systems considered. The approach was seen to be sufficiently accurate. Compared
to the quantum mechanical calculations, the numerical effort is significantly reduced.
The semiclassical trace formula only depends of the properties of the classical dynamics
of the system. This feature allows to give simple, intuitive pictures for the relevant pro-
cesses. A particular focus was directed towards the explanation of the observed quantum
interference effects in these classical terms.

8.1.1 The disk billiard

The level density of the disk billiard in homogeneous magnetic field was chosen as the first
model system. It is simple enough to allow an analytic quantum mechanical solution, so
that the shortcomings of the semiclassical approximation can be analyzed very accurately.
It is, on the other hand, complex enough to exhibit the typical problems semiclassical
approximations face. In varying magnetic fields, orbit bifurcations occur. Additionally,
the system comprises orbits with symmetries of different dimensionality, so that different
powers in A contribute to the trace sum. Finally, grazing or diffractive effects come into
play. A detailed analysis resulted in a surprisingly small influence of most of these h
corrections. The only relevant correction concerns the Maslov index. Using a simple one-
dimensional approximation, it was replaced by a reflection phase. With this modification,
the semiclassical trace formula gives excellent results for arbitrary field strengths, both for
the shell structure and for full quantization. The shell structure could be explained within
a simple picture including only the classical properties of three periodic orbits.

8.1.2 The free 2DEG

The free 2DEG was selected as a simple model system for the application of semiclassical
transport theory. Both its longitudinal and its Hall conductivity were described semiclas-
sically. It was shown that the Shubnikov-de-Haas oscillations in the longitudinal conduc-
tivity are an effect of leading order in 4. The integer quantum hall effect, in contrast, is
almost exclusively due to a single contribution of second leading order, namely the period
dependence of the cyclotron orbits on the magnetic field strength. The corresponding h
correction could be derived for arbitrary systems.
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8.1.3 The channel with antidots

The longitudinal magnetoconductance of a narrow channel with central antidots was cho-
sen deliberately as a difficult problem for a semiclassical analysis. Previous results had
found strong indications that the effects observed in this system, namely the dependence
of the maxima spacings on the magnetic field and the dislocations observed when varying
the antidot diameter, are genuine quantum effects, not accessible to a semiclassical calcu-
lation. Furthermore, the system shows features that disfavor a semiclassical description:
The channel has many orbits with comparable length and action. They are related by
a complicated structure of bifurcations, and ghost orbits are ubiquitous. Despite these
problems and the related technical difficulties it was possible to give a complete semiclas-
sical description of all observed effects. The local behavior at a dislocation could even be
reproduced quantitatively, and the parameters of the model potential could be fit to the
experimental situation. It was shown that the complex behavior of the system is not due
to higher-order contributions in A, but to a delicate interplay between the actions and
amplitudes of many similar orbits. Within the semiclassical picture, the observed magne-
toconductance features could be related to bifurcations in the leading classes of periodic
orbits.

8.2 The relevance of h corrections

A central result of this work is that semiclassical approximations are valid in a much
wider range than they are expected to. Even large individual higher-order contributions
frequently lead to marginal corrections, since they average out to a great extent. Only
two important sources of A corrections were identified.

8.2.1 Different powers in 7/ in the trace formula

The first group of relevant & corrections are those that come naturally into play by the
application of the semiclassical procedure itself. This happens for example in systems that
include orbits symmetries with different dimensionality. The orbits with lower symmetry
lead to contributions in higher than leading order in 4. These h corrections are neglected in
the standard approach. For the disk billiard, however, the inclusion of the lower-symmetry
bouncing orbits was shown to be necessary.!

The conductivity tensor is another property where the semiclassical approximation by itself
includes higher-order terms in A. In this case the leading-order term of the level density
shows up as an A correction in the Hall conductivity. This correction is responsible for
the plateaus in the hall voltage, i.e. the integer quantum hall effect. The corresponding
formula for general systems could be derived.

8.2.2 Reflection phases

The Maslov index was identified as another source of potentially important A correc-
tions. This additional phase occurs at classical turning points (or their higher-dimensional
equivalents). It exhibits a spurious discontinuity in dependence of the steepness of the

!Similar results have been obtained for other systems as well [119].
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effective potential. In a one-dimensional approximation this jump can be removed by
replacing the Maslov index by a reflection phase. The phase depends explicitly on £,
which corresponds to A corrections to the trace formula. These corrections were shown
to be important for the disk billiard in the strong field regime R. S R. They correct the
degeneracy of the Landau levels, which is overestimated by the standard approach. The
mechanism can be interpreted as a proximity effect of the boundary.?

The generalization of the reflection phase to higher dimensions is still an open problem.

8.2.3 Bifurcations and grazing

Grazing corrections are related to finite integration limits in stationary-phase approxima-
tions. These effects can be expected to give corrections up to 50% to the level density of
the disk billiard. A detailed analysis showed, however, that this correction is negligible
there.

Bifurcations were seen to be important for problems including only a few orbits. This is
intuitive, since bifurcations lead to divergencies in the standard Gutzwiller approach. If
many orbits are included, the influence of the bifurcations (although their number might
drastically increase) gets smaller. This has to be interpreted as a cancellation effect. This
behavior was found for both the disk billiard and the channel system.

There are different mechanism relating bifurcations to experimentally observable effects.
It was reported that their lower order in A may lead to local dominance of the bifur-
cations. Period doubling bifurcations are known to be responsible for period-doubling
effects in resonant tunneling diodes. The mechanism in the channel was shown to be
different. There, bifurcations mark the boundaries of phase space regions with different
classical dynamics. The semiclassical description reflects the classical phase space struc-
ture in the quantum oscillation. Like that is was possible to directly relate one type of
bifurcations of the cannel system to the dislocations observed in the maxima positions of
the magnetoconductance.

8.3 Smoothing in higher order of

Finite temperature and impurity scattering lead to finite line widths and characteristic
line shapes. Just as the semiclassical approximation itself, the implementation of those
effects in the trace formula is only valid up to leading order in h. This work presented
generalizations applicable to the h corrections considered.

For both cases where this modified smoothing scheme was applied, namely the bifurcations
and the grazing correction in the disk billiard, the magnitude of the smoothing correction
was comparable to the A correction itself. For bifurcations in systems with many orbits
it was shown that neglecting the A correction in the trace formula and just including the
correct (numerical) smoothing already leads to surprisingly good results.

2Reflection phases can also be applied to problems including partial transmission and reflection, and
therefore also to tunneling.
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8.4 Suggestions for further investigations

The results of this work indicate that bifurcations have a considerable influence in systems
with only a few dominating orbits. For those, a numerical inclusion of bifurcations of
codimension 2 along the path presented here could be useful. A suitable prototype for
these systems is the Hénon-Heiles potential, where three important orbits are involved
in a period-tripling and subsequent tangent bifurcation. An appropriate starting point
are the uniform formulas presented by Schomerus [71], with an adaption to the numerical
limitations following appendix B.

For the disk billiard in strong magnetic fields, the correction of the Maslov index was
shown to be important. This correction was included using a simple, one dimensional
approximation, where the potential at the classical turning point was expanded to linear
order. This approximation could be further improved implementing the analytical reflec-
tion phases worked out by Friedrich et al. [29]. This would be another step towards a
generalization of the Maslov index.

The most rewarding field for future investigations, however, is the application of the semi-
classical techniques to experiment. The fit of the model potential of the channel system
was so successful, that a project to determine the experimental potential by semiclassical
techniques seems reasonable. Such a project would exploit the substantially reduced nu-
merical effort of semiclassical calculations, making an adaption of many parameters of the
experimental potential numerically feasible. A good candidate for such an investigation
is the conductance of the Aharonov-Bohm-ring measured by Pedersen et al. [124]. The
long-range oscillations superimposed on the AB frequency stem from the interference of
trapped orbits in the ring arms. Fitting the semiclassical findings to the experimental
observations should, among other predictions, allow an estimate of the depletion width of
the etch border.

Similar calculations should be possible for antidot superlattices. For the system with large
antidot diameter presented by Eroms et al. [27], also the steepness of the effective potential
could be accessible.

These investigations would add a new quality to semiclassical approximations. The semi-
classical description would then not only reproduce the experimental findings and allow
their interpretation in an intuitive picture. For these systems, it could additionally provide
a tool to determine experimental parameters hardly accessible by other means.






Appendix A

Numerical evaluation of periodic
orbits

This technical appendiz describes numerical techniques to deal with classical periodic
orbits. Efficient methods for finding those orbits, calculating the relevant properties
for the trace formula, and following them through parameter space are presented.
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A.1 Finding periodic orbits

The numerical determination of periodic orbits in an arbitrary potential includes three
steps:

1. Integration of the classical equations of motion (EOM).
2. Calculation of the variation of the endpoint for small changes of the starting point.

3. Calculating an improved starting point.

Beginning with randomly distributed starting points, these steps are iterate until conver-
gence.

A.1.1 Integrating the equations of motion

The equations of motion are readily integrated numerically. For a sufficient performance
of this innermost step in the semiclassical calculation an efficient scheme with adaptive
step-size control should be implemented. For smooth potentials, the algorithm presented
by Bulirsch and Stoer [104, 107] is accepted to be one of the most powerful methods
available.

A.1.2 The matrizant

Calculating the effect of a small change of the starting point by integrating trajectories
at small, but finite distances suffers from severe numerical limitations. The numerical

roundoff gets worse for larger |Tr(M)| and is intolerable already for moderately unstable
orbits. Eckhardt and Wintgen [25] presented a method which is better adapted to the
limitations of a numerical approach. It will be outlined in the following.

Denoting the phase space vector of the reference trajectory with v = (q,p) with the
coordinates q and the canonical conjugate momenta p, the EOM can be written as

"y:laaH with l::<0H>. (A.1)

Here and in the following, the dots signify derivatives with respect to time. The linearized
time evolution of the difference vector to the reference orbit d+ is given by

oy(t) = x(t) 0v(0), (A.2)

with the matrizant X- The time evolution of X can be shown to be

2
H
%=Ly with L) =7 201 (A.3)
Y@
and x(0) =1 For periodic orbits, the monodromy matriz' M is defined as M = x(T),

where T is the period of the orbit.

'To be consistent with the standard notation in trace formulae, the monodromy matrix is denoted
without underscore.
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The matrizant is symplectic, i.e. xT.J x = J, and two eigenvalues of x are equal to 1 (see
Eq. (A.5) below). One of these trivial eigenvalues is associated with energy conservation,
the other with the displacement along the trajectory. The corresponding eigenvectors can
be eliminated analytically. This will be sketched in the following for two dimensional
systems. From now on, v = (z,y,u,v).

Introducing a local coordinate system by the unitary transformation U (t) according to

& —u/¢® -y —v/¢
~ : gy 0/ & /g
g/ —u i/¢

where ¢ = || leads to a transformed matrizant

1 * *x %
(1) = 2(0530) with () = U wxoue = | o L0 @
0 =* X(t)

In this coordinate system the two eigenvalues of 1 can be seen explicitly. The time evolution
of the reduced matrizant X(t) is given by

(t) = 1(t) X(t) with | = UN(LU-U). (A.6)

[=1

Denoting the partial derivatives of the Hamiltonian by subscripts, i.e. H, = 0H/0z, the
matrix [ is explicitly given by

1 = <l11 ll?), with (A7)

lo1 oo

i = [(—=Hew — Hyy + Hyu + Hyp)(Ho Hy + HyH,)

+(—H} + Hy + H} — H})(Hyo + Hyo) + 2(H,Hy — HH)(Hey + Hya)) /6°
ho = [(Hew+ Hu)(Hy + H2) + (Hyy + Hou)(H2 + Hy)

—2(H,H, + HyH,)(Hy, + Hy,) — 2(H,H, — H,H,)(Hyy — Hy,)]/q*
loy = [ = (Hyw+ Hyy)(Hy + H}) = (Hyy + Hy)(H; + H)

+2(H, Hy + HyHy)(Hyy + Hy) + 2(Hy Hy — HyH,)(Hpy — Hyy)
log = —li1.

These formulae have been derived by Eckhardt and Wintgen [25]. They shall now be
applied to a particle in a homogeneous magnetic field and a velocity-independent external
potential V. For this situation, it is convenient to express [ in dependence of the real space
coordinates and their time derivatives. This finally leads to

hh = (2—w?/2— Ve —Vy) (@Ve +3V,) /¢ (A.8)
he = (14 we/2)%) /@ + [Vaa(@® + B%) + Vi (57 + %) + 2Vay (29 — aB)] /q*
1 = — (Ve + Vi + wg/2) (9‘52 + g2) -9 (a2 + 52)

log = —li1.
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with w, = eB/m*, a = (V; — yw./2) and 8 = (V,, + 2w,/2). Starting from the initial
condition x(0) =1, Eq. (A.6) can be integrated. The most effective approach is to solve
the equations of motion for ¥ and the time evolution of the trajectory simultaneously.
This leads to four equations for the phase-space motion and another four for Y. Without
reduction of the matrizant to two dimensions, a (4 x 4 + 4 =) 20-dimensional differential
equation has to be solved. This integration is the innermost loop of the calculation, so
that the analytical reduction of the monodromy matrix speeds up the the semiclassical
approximation by a factor of about 2.

The matrizant gives the linearization of arbitrary deviations from ~(¢). In the following
section this information will be used in a numerical scheme to converge to periodic orbits.

A.1.3 Improving the initial condition

To identify an orbit with a unique starting point, an additional plane in phase space, the
Poincaré surface of section P, has to be defined. Starting with a random initial condition
on P, the trajectory and the reduced matrizant can be integrated as explained in the
previous section. Having found another intersection with P close to the starting point,
the reduced matrizant should be used to improve the initial condition.

For a simple notation, -« is the phase space vector (z,y, u,v) as given above, and the initial
and final point are denoted by v; and ~, respectively. The corresponding vectors in the
local coordinate system are given by 4, = U 1(0) 5, and Vi = U T 'yf.2 The second
part of ¥ = (31,72,73,74), is denoted by 4 := (73,74). Starting at a distance 7 to the
initial point results, according to the definition of X in Eq. (A.5), in a deviation Ay = x 6%
from the final point. If the new starting point corresponds to a periodic orbit, i.e.

~ ~ ! ~ ~
Yty = 5+ Ay
= 6y = (I- X)fl (Y5 =) - (A.9)

All quantities on the r.h.s. of Eq. (A.9) are known explicitly, so that the necessary cor-
rection 6 = (¥3,74) leading to a periodic can be calculated. Note that by the reduction
to 2D no information is lost, since the two omitted basisvectors have eigenvalues 1. The
correction §4 can now be transformed back to the ordinary phase space coordinates via
oy = U(0) 64, where 64 := (0,0,73,74). This step introduces an additional error, since
the local coordinate system of neither the initial point U(0), nor of the final point U(T")
but of the new starting point gives the correct transformation. In practice, however, the
difference is insignificant.? Apart from that small error, 57 is equivalent to the result of a
calculation using the full 4D matrizant.

Taking v = 7, + 07 as the new starting point unfortunately

1. leaves the Poincaré surface of section.
This is associated with the fact that the periodic orbit may have another period as
the reference orbit. The initial correction therefore has to be extrapolated onto the
Poincaré surface according to 64 +dt-~4 € P.

2P]ease note that for non-closed orbits the local coordinate system for initial and final point are different.
3The best approximation feasible at this stage is a linear interpolation between the local coordinate
systems. This does not improve the convergence.
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2. violates energy conservation.
The matrizant describes the linearization of deviations from the reference orbit, and
thus is only energy conserving to linear order. To prevent a shift of energy, the
starting condition has to be projected back on the energy surface.?

Including these two projection procedures, v = 7; + 0Yprojected &iVes an improved initial
condition.

A.1.4 Converging to a periodic orbit

In the linear regime of a periodic orbit, the scheme of the preceding section converges in
a single step. If the initial condition is outside the linear regime, the procedure has to
be iterated. Usually a few iteration steps (< 10) are sufficient to determine the initial
condition within machine accuracy (i.e. ~ 10713). In closed systems nearly all starting
conditions converge to a periodic orbit, so that periodic orbits are easily found. For open
systems the trajectories have a finite probability to leave the system. This leads to an
increased numerical effort, since several starts are needed to converge to a periodic orbit.
For the channel the probability for a trajectory to leave the central antidot regime is so
large that only a small fraction of initial conditions converges.

To converge to those unstable fixpoints whose incoming and outgoing manifold intersect
on the Poincaré surface of section at an extremely small angle, it is sometimes useful to
add only a fraction 0 < & < 1 of the calculated correction to the initial condition, i.e.
Y = i + K0Yprojected- Lhis enlarges the radius of convergence for these special fixpoints,
but also increases the number of iterations required.

Starting the above procedure with random points does not assure to find all periodic
orbits in the system. The most relevant, however, are those with large amplitudes. These
have a large radius of convergence, so that the probability of missing an important orbit
is small. It can be further reduced by following the orbits through parameter space.
Thereby one can conveniently check that no orbit is missed at a bifurcation. Furthermore,
orbits can frequently be classified. For the channel system, the number of reflections
in the constrictions together with the symmetry of the orbit gives such a classification.
Missing orbits can readily be identified in such a scheme. All this establishes no proof,
but combining these three methods can assure beyond reasonable doubt that the relevant
orbits have been included.

A.2 Properties of the orbits

Once the above algorithm has converged, the properties of the newly determined periodic
orbit have to be calculated. For the application of the trace formula the action S, the
determinant of the monodromy matrix M, the period Ty, the Maslov index p and the
velocity-velocity correlation functions C;; have to be evaluated. In systems with discrete
syminetries, also the symmetry-related degeneracies have to be known.

4In practical applications it is often unnecessary to calculate the normal vector of the energy surface.
It is generally sufficient to include the correction to the (absolutely) smaller component of the momentum
(du or 6v) directly, and to determine the second momentum component from energy conservation. This
simplification has hardly any influence on the convergence properties.
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A.2.1 Period, action, stability and degeneracy

The period T} is automatically calculated when integrating the equations of motion. The
action can be integrated straight-forward using

1o 1o
S—/ pdq:/ pq dt | (A.10)
0 0

with p = (z,y) and g = (u,v).
The stability of an orbit enters the trace formula via Det(M —1). The monodromy matrix
M is identical to the matrizant after one period, i.e. M = x(Tp). The determinant is

neither affected by the unitary transformation U, nor by the reduction to two dimensions,
since the omitted eigenvalues are 1. Therefore

Det(y — 1) = Det(§ —1) = Det(Y — 1) = 2~ Tx(¥) , (A.11)

so that Det(M —1) can be identified with 2 — Tr(]Tf ). The stability matrix M is given by
the reduced matrizant x at T' = Tp. The latter is already known from the convergence
procedure.

The symmetry of an orbit can be determined numerically by calculating the intersections
with suitable Poincaré surfaces of section. These have to be chosen according to the pos-
sible symmetries of the orbits, i.e. the symmetries of the system. Close to a bifurcation,
however, the asymmetry of an orbit can be infinitesimal small, and thus covered by the
numerical inaccuracies. Due to these limitations, the degeneracy cannot be determined
numerically in the vicinity of a bifurcation. The degeneracy and the Maslov index of an
orbit change only at bifurcation points. Following the orbits through parameter space
(see appendix A.3), these quantities can conveniently be calculated sufficiently far from a
bifurcation.

The channel considered in this work exhibits three discrete symmetries: with respect to
reflection at the z-axis, the y-axis and the combination of these reflections, i.e. a rotation
by m. A convenient Poincaré surface is given by y = 0. The orbits have anyway to
be calculated for varying B and s; in order to compare with the experimental findings.
Therefore choosing B and s; to be far from bifurcations does not lead to additional
numerical effort.

A.2.2 Velocity-velocity correlation function

A nice idea® to reduce the numerical effort calculating C;; is to express the velocity of the
periodic orbit as a Fourier sum

vi(t) =T+ Y [ain sin(nwt) + by, cos(nwt)] (A.12)

n=1

where w = 27 /Ty, Tp is the period of the orbit, and i stands for either x or y. Inserting
this expression in Eq. (5.7), all integrations can be performed analytically. The final result
reads

oo

E Z (ai,n Qjn + bi,n bj,n)/Ts - (ai,n bj,n — Qjn bz,n)nw
2 (1/75)? + (nw)? '

Cij = (A.13)

n=1

5This idea of U. RoBler was communicated by R. Onderka.
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The coefficients a,, and b,, can be calculated from the integrals

2 [To
iy = — v;(t) sin(nwt) dt and (A.14)
T(] 0
2 (1o
bin = — v;(t) cos(nwt) dt .
To Jo

These integrations can again be performed simultaneously with the integration of the
EOM.

A convenient method to check the convergence of the Fourier sum Eq. (A.12) is given by
Parseval’s theorem. For this special case it reads

o0

To 2 2 2 2
[ 08 = 23 [f@i? + 0,7 (A1)

n=1

In a numerical integration, where Eq. (A.12) has to be truncated, this relation allows a
numerical calculation of the truncation error.

In the case of the channel system, all orbits are similar to cyclotron orbits. This leads
to rapidly decaying higher harmonics. Furthermore, the first term in Eq. (A.13) can be
neglected for those trajectories. This simplifies the calculation of C;; to

ToTs — (az n)2 + (bs n)2
C ~ : : d A.16
o 2 ngl 1+ (nwrs)? o ( )
ToTs = Ay ben + Gz nbyn
C ~ Y, ’ ’ Y, .
Ty 9 nz::l 1+ (’ans)Q NWwTg

For wry > 1 , the higher Fourier components are additionally damped by the factor
1/(nwTs). This is fulfilled for the channel with antidots considered in chapter 7. Therefore
the inclusion of the leading 5 Fourier components was sufficient.

Note that the calculation of N Fourier components leads to 4N additional differential
equations which have to be solved simultaneously to the EOM. It is therefore indicated to
calculate only v and M while converging to a periodic orbit, and to integrate the complete
system of differential equations (including the action, the stability angle and the Fourier
components) only once for each (converged) orbit.

A.2.3 Maslov index

The Maslov index is a geometrical winding number [22, 66]. This property will be used
in the following for its numerical evaluation. The procedure presented here is similar to
the one of Eckhardt and Wintgen [25], but it is numerically more convenient. It is much
easier to implement than the general method presented by Creagh and Robbins [22, 66].°
It is, however, restricted to two dimensional systems.

6Their approach is presented in a version accessible to numerical calculations in Ref. [100].
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A periodic orbit is a fixpoint of the map-
ping of the Poincaré surface of section
onto itself. The local linearization of
the mapping is given by the reduced sta-
bility matrix’. Starting with a small de-
viation from the periodic orbit v which
corresponds to an eigenvector of M, this
deviation winds around 7. The total
Figure A.1: Local phase space portraits around a winding angle O is related to the Maslov
periodic orbit. (A) Stable, (B) unstable orbit. index. This relation is different for the
different types of fixpoints, i.e. periodic orbits. The local behavior around the fixpoint
can easily be classified in dependence of the eigenvalues mq, mg of the stability matrix M:

(A) B)

e
Wi

stable orbits < |mi| = |ma| = 1; Fig. A.1(A).
An orbit in the vicinity of a stable orbit remains on a ellipse around the fixpoint.
All these ellipses map onto themselves. For stable orbits, the trace of the stability
matrix is absolutely smaller than 2.

hyperbolically unstable orbits < m; = 1/mg > 1; Fig. A.1(B).
Two lines in the Poincaré section map onto each other. Starting on one of these,
the distance of the intersection points to the fixpoint exponentially grows (m > 1,
outgoing manifold) or shrinks (m < 1, incoming manifold). Hyperbolically unstable
orbits have Tr(M) > 2.

inverse hyperbolic orbits < m; =1/mgy < —1
Equivalent to the hyperbolic case, but the intersection points change the side of the
fixed point with each revolution. The trace of M of these orbits is smaller than -2.

For two dimensional unstable orbits the winding angle © is identical for all initial de-
viations, and a multiple of 7 (even multiple for the hyperbolic, and odd for the inverse
hyperbolic case). This is obvious, since both the incoming manifold and the outgoing
manifold map onto itself. The stability matrix is linear, so that this also holds for all
linear combinations of these vectors, i.e. the whole surface of section.

For stable orbits, © is given by the winding angle of an eigenvector of M. Now the winding
angle is not a multiple of 7, and it depends on the initial deviation. The common way
to determine the winding angle is therefore to calculate first an eigenvector of M, and
to propagate this along the periodic orbit. This procedure can be simplified, so that a
single integration yields ©. This approach uses different informations about ©, which are
combined to uniquely define the winding angle.

The starting point is to write M as the product of a rotation and a positive definite
symmetric matrix 1"

~ cos(p) sin(y)
M= I( —sin(p)  cos(p) > ' (A-17)

"Strictly speaking, the reduced (2D-) stability matrix is a mapping of the plane perpendicular to the
orbit (at the initial point) and the energy surface onto itself. This distinction is, however, unimportant for
the following discussion.
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This is always possible, and the factorization is unique [95]. ¢ can easily be determined
via

¢ = arctan MM (A.18)
mi1 + ma2

¢ is a continuous function of ¢, and ¢|;—9 = 0. To evaluate ¢ numerically, the stepsize
of the differential equation solver has to be small enough so that subsequent ¢ differ by
less than 7. This condition is readily implemented in the adaptive stepsize control of the
numerical integration. The correct branch ¢(t,) can then be selected at every timestep
with the knowledge of p(t,—1).

The integration of the EOM as described in Sec. A.1.4 calculates x instead of M. Since
the local coordinate systems are identical at ¢ = 0 and ¢ = Tj, the winding angles in the
local and the stationary system can only differ by integer multiples of 2. The coordinate
system Eq. (A.4) used above does not introduce those spurious windings [25]. Therefore,
X can be directly used to calculate .

Geometrically, ¢ describes the rotation of M , and T a shearing. An arbitrary initial de-
viation is rotated by ¢ and sheared according to I'. The shearing changes the direction
of the vector by an angle a with |a| < 7/2. Furthermore, sign[tan(y)|=sign[tan(©)]. The
eigenvalues of M are given by mi 2 = exp(+i¢©). This determines |©| modulo 27. Com-
bined, this information is sufficient to determine © uniquely. The description convenient
for a numerical calculation reads

© — 27 INT [Zj}—}—ésign [m0d2<(p;w>1} . with
™

- \/1 - (Tr(JTI)/2)2
© = |arctan — . (A.19)
Te(M)/2

Here INT|z] stands for the largest integer smaller or equal to z, and mods for the remainder
in a division by 2.

The Maslov index is determined from the winding angle. For unstable orbits it is given
by © in units of 7

pw=0/r. (A.20)

For stable orbits, p is the nearest odd integer to the winding angle in units of 7, i.e.

(A.21)

0
u:1+2-NINT[ J”r] .

™

The winding angle scales with the repetition number of the orbit. The above formulas
show, however, that the Maslov index only scales for unstable orbits with the repetition
number. This makes the inclusion of higher repetitions of a stable orbit more complicated.
Many authors therefore restrict themself to the generic case of completely chaotic systems,
where all orbits are hyperbolically unstable. Having finally determined the Maslov index,
all quantities needed for the evaluation of the semiclassical trace formula are known.
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A.3 Following periodic orbits through parameter space

In order to calculate the semiclassical trace formula for different values of the external
parameters (in the case of the channel system these are the magnetic field and the anti-
dot diameter), it is desirable to have an algorithm which follows a specific orbit through
parameter space. This can be achieved by iteratively changing marginally the parameter,
followed by the convergence procedure described in Sec. A.1.4. This approach is fre-
quently inapplicable, since (especially for very unstable orbits) the largest stepsize which
still assures convergence is too small for any practical purpose. Extrapolating the initial
conditions conditions to the new value of the parameter allows larger stepsizes. Note,
however, that it is again necessary to ensure that the extrapolation remains on the surface
of section and on the energy shell.

The choice of the extrapolation scheme is important for the performance of this approach.
Linear interpolation is frequently not good enough, so that polynomial or rational function
extrapolation is recommended. As pointed out in Ref. [104], extrapolations to too high
orders tend to introduce spurious oscillations due to numerical inaccuracies of the data.
In this work, rational function interpolation to 4th order was implemented. The starting
condition in = and & was extrapolated to the new external parameter, y was fixed by
the Poincaré surface of section, and g (the larger velocity component) was determined by
energy conservation.

To reduce the computation time further, it is reasonable to introduce an adaptive stepsize
control. The number of convergence steps needed can readily be used as a criterion for
the next stepsize. The critical point is to ensure that, at the new value of the external
parameter, the procedure does not converge to a different PO. For systems like the
channel, where the initial conditions for many periodic orbits are close in phasespace,
this requires special care. A convenient and reliable method is to check whether all orbit
quantities vary smoothly. In this work, the following characteristic data of the orbits have
been extrapolated to the new parameter value: Action S, stability Tr(M), period Tj and
winding angle ©. The latter quantity is especially useful for systems with geometrically
very similar orbits. The deviation of the extrapolation of these quantities to the orbit
converged to was controlled, and too large deviations were rejected. In this case, a new
extrapolation with reduced stepsize was started. It turned out that it is helpful to adapt
the stepsize not only according to the number of iterations needed, but additionally to the
extrapolated changes of the other orbit parameter. This applies especially in the vicinity
of bifurcations.

This procedure works its way quickly through uninteresting terrain, slowing down where
the starting conditions of the periodic orbits vary substantially. The storage requirements
can be reduced by saving only those data points, where an interpolation of the neighboring
points is worse than a tolerated error.

Furthermore it is convenient to include routines that can handle bifurcations. At the
bifurcation the orbit is marginally stable, so that the convergence algorithm proposed
above fails. This drawback can be overcome by first approaching the bifurcation point
as close as possible. Then the initial conditions are extrapolated sufficiently far to the
other side of the bifurcation, trying to converge to the orbit beyond the bifurcation. This
procedure was implemented for period doubling bifurcations.



Appendix B

Numerical uniform approximation

The uniform approximation as presented by Schomerus and Sieber [70, 73] requires know-
ledge about the properties of the ghost orbits. This information is not available in a
numerical calculation. Therefore it is desirable to develop a modified approach which only
needs data that can be accessed numerically.

The derivation of Sieber and Schomerus starts from the normal form of the bifurcation.
They express their parameters in terms of the quantities which enter the Gutzwiller trace
formula. On the side of the bifurcations where all orbits are real, their formulas can
directly be evaluated numerically. In the following, a technique for a numerical access to
the complex side is presented. It consists of a fit of the parameters of the local form. The
normal form is then extrapolated to the complex regime in a way that ensures the correct
limiting behavior far from the bifurcation. This makes the numerical approach uniform
in the sense that both the local behavior at the bifurcation and the Gutzwiller limit are
reproduced correctly.

This procedure is derived for the two types of bifurcations occurring in the cannel system,
namely the tangent (or isochronous) and the period doubling (or pitchfork) bifurcation.

B.1 Tangent bifurcation

The normal form of the tangent bifurcation implies the following local behavior of the
action! S and the amplitudes A of the two orbits engaged in the bifurcation [70]:

2e € be?
S = S e _——
1,2 0+ 3 30 942’

1 5
A = 20z 1/ (AOJFM/%) : (B.1)

Considering the level density, Ag is given by the period Tj of the orbit; in case of the
conductance, Ap is the velocity-velocity correlation function (see Egs. (2.14) and (5.4)).
€ is the parameter which is varied across the bifurcation. It is zero at the bifurcation

'For a simple notation, the actions are given in units of / in this appendix.

J. BLASCHKE, PH.D. THESIS REGENESBURG, 1999 published under http://www.joachim-blaschke.de
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itself and negative on the real side (i.e. the side of the bifurcation where the orbits exist
classically). It will be convenient to define the quantities

AohtAz o, Ao

24, 24,

Si+ S S — S (B.2)
5':271; 2 ; AS:zilg 2.

Using that Sy generically has a dominant linear dependence on €, the local behavior at
the bifurcation according to Eq. (B.1) can be written as

|A| ™ =aqle| ; |AAI* =aslel;

S =Sy+ae; |AS|?/3 = asle| . (B:3)
For AA the higher-order terms in ¢ stemming from a variation of 7 are neglected here.
Either of the first three relations can be used to define the mapping between £ and the
physical quantity varied across the bifurcation (which is the magnetic field B in the present
system). This mapping has to be extrapolated to the complex region. For the system
considered in this work, the linear term of this mapping strongly dominates, so that
higher-order contributions could be neglected. This approximation is equivalent to the
ansatz

g = ﬁ(B - Bbif) . (B4)

The linear relations Eqgs. (B.3) together with Eq. (B.4) allow to determine the parameters
a1—4, Sy and Byt using straight-line fits.? This is numerically more convenient than using
the original expressions Eqs. (B.1). Data points close to the bifurcations have a limited
numerical accuracy, since it is difficult to converge to a marginally stable orbit (there the
technique using the stability matrix fails due to vanishing first derivatives). Far from
the bifurcation, the leading-order approximations of Eq. (B.1) no longer hold. So prior
to the fit of the parameters of the local normal form, the fit region has to be adapted.
Straight-line fits are numerically very stable and can be used both for the determination
of the optimal fit region and for the fit of the parameter themselves. The upper as well as
the lower limit of the fit-range were chosen for a minimal error in the slopes.

Egs. (B.3) give only the absolute values for A, AA and AS. The signs of these quantities
can be omitted if the following factors are introduced:

o1 = sign(AS) ; o9 = sign(AA) . (B.5)

These are readily calculated on the real side of the bifurcation.

The Maslov index of the bifurcation is given by the average of the Maslov indices of the
two orbits involved

o= (p1+mpm)/2. (B.6)

2The parameters are actually over-determined by Egs. (B.3), since Byt can be extracted from either of
the three first equations. This gives a convenient additional error control.
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In these quantities the uniform approximation for the tangent bifurcation reads [70]

5=/ A8 x [ A1 {T1/5(1AS]) + Jiya(1ASD Y cos (S =G ) (B)

— 13| AA| {J_a5(|AS]) = Jos3(1AS]) } cos (S — (- 1)5)]

on the real side, and

5 = 1/21A8] %
™

K 5(1AS ) cos (S = 3 (B3)

—~0|AA|Kay3(|AS]) cos (S = (= 1)3) ]

on the complex side. All prefactors (including the degeneracy) have been absorbed in the
amplitudes A;, so that the formulas are valid both for the level density and the conductance
and also for systems with continuous symmetries.

On the real side far from the bifurcation, the uniform approximation Eq. (B.7) can, as
already pointed out, be implemented directly in a numerical calculation. In this region,
A, AA, S and AS can be determined from the properties of the classical orbits, using the
definitions Egs. (B.2). Close to the bifurcation the numerical evaluation of AA fails, since
the amplitudes diverge at this point. There, however, Eqs. (B.3) (with the parameters
adapted as described above) yield the correct local behavior. This local form also holds
for the complex side of the bifurcation. Since AS increases like ¢3/2, the contribution on
the complex side according to Eq. (B.8) goes to zero. This ensures that the numerical
extrapolation reproduces the correct Gutzwiller limit on the complex side. The only dif-
ference to the analytic uniform approximation is the intermediate complex regime. There,
however, the contributions are strongly suppressed, so that the deviation is small.

The crossover between the local normal form and the direct orbit data is preferably im-
plemented by a a linear interpolation between these two descriptions. Choosing for this
crossover approximately half the region used for the parameter fit above, the crossover is
smooth. This is simply because the two methods are by construction well adapted in this
regime.

The results are depicted for a typical tangent bifurcation of the channel system in Fig. B.1.
The action is scaled by a factor of 10 for clarity. The solid lines in the insets show the local
behavior of the quantities of Eqs. (B.3). The corresponding linear fit? is indicated by the
dashed line. The main graph shows the Gutzwiller result (thin) and the numerical uniform
approximation (heavy), which reproduces the Gutzwiller data far from the bifurcation.
The spurious divergence is, indeed, removed, and decaying contributions from ghost orbits
are included.

3The plotted range in B is approximately 5 times the optimal fit region, so that the nonlinearities can
clearly be seen.
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Figure B.1:  The tangent bifurcation of Fig. 4.4, with action scaled by a factor of
10. Thin: Gutzwiller result, heavy: numerical uniform result. The insets show the
behavior of the quantities of Eqs. (B.3) (solid) and their linear fit (dashed).

B.2 Pitchfork bifurcation

The normal form of the period-doubling bifurcation implies the following local behavior:

&?2 ce
5= 5 E(0g)
' 0t U TS
Trg :=Tr(My) = 2-—20¢
Try:= Tr(M;) = 2+ 4oe — 3coe?. (B.9)

Here (and in the following) the subscript 0 denotes the central orbit, and the subscript
1 the two orbits* that split off at the bifurcation. In contrast to the tangent bifurcation
discussed above, here the central orbit is real on both sides of the bifurcation. Therefore
the mapping between e (the parameter of the normal form driving the system through
the bifurcation) and B (the physical parameter varied across the bifurcation) can be left
implicit by substituting ¢ with o(1 — Trp/2).

It is again necessary to carefully adapt the fit ranges, since both close to and far from
the bifurcation the errors increase. Therefore the parameters are again determined using
suitable linear relations. The absolute value of the parameter c is readily fitted by

V6 — (2Trg + Tr1) = /[3¢|[1 — Tro/2| . (B.10)

It is convenient to define the factors o, o1 and o9, which only contain sign informations. oo
is 1 on the real side (i.e. where both the central orbit and the satellites exist classically),
and —1 on the complex side of the bifurcation. ¢ and o refer to properties of the real
side of the bifurcation. o7 is given by the sign of (51 —Sp), and o = o7 if the central orbit
is unstable, and 0 = —o1 otherwise. The sign of ¢ can be determined on the real side by

sign(c) = osign[6 — (2Tro + Try)] . (B.11)

4This corresponds to the channel with antidots considered in this work. For generic systems without
discrete symmetries, there is one satellite orbit with twice the period.
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Using

2
AS:—SI_SO—SLO@) [1+C—"<1@>], (B.12)
a

2 2 2 2

the parameter a can be evaluated by another linear fit. The Maslov index y in the uniform
approximation is given by the Maslov index of the central orbit where it is unstable.” The
uniform approximation for the period doubling bifurcation is most easily written down
defining the amplitudes

A -
R/ T

(where the k; contain all prefactors of the trace formula, including the degeneracy of the
orbit) and their linear combinations

At = (% + %) and A~ = (% - %) : (B.14)

Using these quantities, the uniform approximation reads [70]

J = 1/%|AS| Re[exp <z {g—ug—(f%}) X (B.15)

LAF (0211 a(1AS)E™S Iy u(AS e/ )

(B.13)

FA7( T3alIAS)ETITE 4 0] g a(|AS|)e ) }] |

The numerical evaluation is similar to the case of the tangent bifurcation. On the side
where all orbits are real, A*, A=, AS and S can be determined directly from the numerical
orbit data. Near the bifurcation, where the amplitudes diverge and their near-cancellation
causes numerical problems, A% can be approximated via

+ ko -
A 24/]1 — Tro/2| (\/I4—3CU(1—T1'0/2)‘ +1>

- ko 9 )
o 2\/|1Tr0/2|(\/|43ca(1f[‘r0/2)‘ 1)‘ (B.16)

Here it was used that k1 = 2kg at the bifurcation. AS can directly be extrapolated with
Eq. (B.12), and S via S := (Sp + S1)/2 = Sp + AS. These formulae can also be used on
the complex side in the vicinity of the bifurcation. To ensure the correct Gutzwiller limit
on that side, the numerically determined properties of the central orbit should be used far
from the bifurcation. S and AS can be calculated as above, and the ghost amplitude is
extrapolated by

B 2ko 1
V1T = Tro/2] /|4 = 3ca(l — Tro/2)|

5The central orbit is unstable on the real side of the bifurcation if co1 = 1 and on the complex side
otherwise.

Ax (B.17)
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These approximations are only valid for co(1 — Trp/2) < 4/3. At co(1 — Try/2) = 4/3
the local expansions of AS and A; exhibit a spurious divergence. If on the complex
side co(1 — Trp/2) > 0, this leads to a spurious divergence of the numerical bifurcation
treatment. The limit far from the bifurcations, however, is reproduced correctly®. In
this work, the spurious divergence therefore was simply suppressed. Again, the error
introduced is tolerable, since both the local behavior at the bifurcation and the Gutzwiller
limit for isolated orbits is correctly reproduced. In the intermediate complex regime, where
the inclusion of the ghost orbit in the numerical approach is not exact, its contribution is
suppressed with a|l — Tro/2| /2.

The result of the numerical treatment of a period doubling bifurcation for the channel
system is plotted in Fig. 4.4(b,c) of Sec. 7.4.4.2. As for the tangent bifurcation, far from
the bifurcation the Gutzwiller contributions are reproduced, and the divergence at the
bifurcation is removed.

SFor AS — oo the satellite terms in Eq. (B.15) exactly cancel.
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