
Appendix BNumeri
al uniform approximationThe uniform approximation as presented by S
homerus and Sieber [70, 73℄ requires know-ledge about the properties of the ghost orbits. This information is not available in anumeri
al 
al
ulation. Therefore it is desirable to develop a modi�ed approa
h whi
h onlyneeds data that 
an be a

essed numeri
ally.The derivation of Sieber and S
homerus starts from the normal form of the bifur
ation.They express their parameters in terms of the quantities whi
h enter the Gutzwiller tra
eformula. On the side of the bifur
ations where all orbits are real, their formulas 
andire
tly be evaluated numeri
ally. In the following, a te
hnique for a numeri
al a

ess tothe 
omplex side is presented. It 
onsists of a �t of the parameters of the lo
al form. Thenormal form is then extrapolated to the 
omplex regime in a way that ensures the 
orre
tlimiting behavior far from the bifur
ation. This makes the numeri
al approa
h uniformin the sense that both the lo
al behavior at the bifur
ation and the Gutzwiller limit arereprodu
ed 
orre
tly.This pro
edure is derived for the two types of bifur
ations o

urring in the 
annel system,namely the tangent (or iso
hronous) and the period doubling (or pit
hfork) bifur
ation.B.1 Tangent bifur
ationThe normal form of the tangent bifur
ation implies the following lo
al behavior of thea
tion1 S and the amplitudes A of the two orbits engaged in the bifur
ation [70℄:S1;2 = S0 � 2"3 r� "3a � b"29a2 ;A1;2 = 1j12a"j1=4 �A0 � 
r� "3a� : (B.1)Considering the level density, A0 is given by the period T0 of the orbit; in 
ase of the
ondu
tan
e, A0 is the velo
ity-velo
ity 
orrelation fun
tion (see Eqs. (2.14) and (5.4))." is the parameter whi
h is varied a
ross the bifur
ation. It is zero at the bifur
ation1For a simple notation, the a
tions are given in units of �h in this appendix.J. Blas
hke, Ph.D. Thesis Regenesburg, 1999 published under http://www.joa
him-blas
hke.de



xii Chapter B: Numeri
al uniform approximationitself and negative on the real side (i. e. the side of the bifur
ation where the orbits exist
lassi
ally). It will be 
onvenient to de�ne the quantities�A := A1 + A22A0 ; �A := A1 �A22A0 ;�S := S1 + S22 ; �S := S1 � S22 : (B.2)Using that S0 generi
ally has a dominant linear dependen
e on ", the lo
al behavior atthe bifur
ation a

ording to Eq. (B.1) 
an be written asj �Aj�4=�1j"j ; j�Aj4 =�2j"j ;�S = �S0 + �4" ; j�Sj2=3 =�3j"j : (B.3)For �A the higher-order terms in " stemming from a variation of 
 are negle
ted here.Either of the �rst three relations 
an be used to de�ne the mapping between " and thephysi
al quantity varied a
ross the bifur
ation (whi
h is the magneti
 �eld B in the presentsystem). This mapping has to be extrapolated to the 
omplex region. For the system
onsidered in this work, the linear term of this mapping strongly dominates, so thathigher-order 
ontributions 
ould be negle
ted. This approximation is equivalent to theansatz" = �(B �Bbif) : (B.4)The linear relations Eqs. (B.3) together with Eq. (B.4) allow to determine the parameters�1�4, �S0 and Bbif using straight-line �ts.2 This is numeri
ally more 
onvenient than usingthe original expressions Eqs. (B.1). Data points 
lose to the bifur
ations have a limitednumeri
al a

ura
y, sin
e it is diÆ
ult to 
onverge to a marginally stable orbit (there thete
hnique using the stability matrix fails due to vanishing �rst derivatives). Far fromthe bifur
ation, the leading-order approximations of Eq. (B.1) no longer hold. So priorto the �t of the parameters of the lo
al normal form, the �t region has to be adapted.Straight-line �ts are numeri
ally very stable and 
an be used both for the determinationof the optimal �t region and for the �t of the parameter themselves. The upper as well asthe lower limit of the �t-range were 
hosen for a minimal error in the slopes.Eqs. (B.3) give only the absolute values for �A;�A and �S. The signs of these quantities
an be omitted if the following fa
tors are introdu
ed:�1 := sign(�S) ; �2 := sign(�A) : (B.5)These are readily 
al
ulated on the real side of the bifur
ation.The Maslov index of the bifur
ation is given by the average of the Maslov indi
es of thetwo orbits involved� = (�1 + �1)=2 : (B.6)2The parameters are a
tually over-determined by Eqs. (B.3), sin
e Bbif 
an be extra
ted from either ofthe three �rst equations. This gives a 
onvenient additional error 
ontrol.



B.2 Tangent bifur
ation xiiiIn these quantities the uniform approximation for the tangent bifur
ation reads [70℄Æ = r2�3 j�Sj � " j �Aj�J�1=3(j�Sj) + J1=3(j�Sj)	 
os� �S � ��2� (B.7)��1�2j�Aj�J�2=3(j�Sj) � J2=3(j�Sj)	 
os� �S � (�� 1)�2�#on the real side, andÆ = r 2� j�Sj � " j �AjK1=3(j�Sj) 
os � �S � ��2� (B.8)��j�AjK2=3(j�Sj) 
os � �S � (�� 1)�2 �#on the 
omplex side. All prefa
tors (in
luding the degenera
y) have been absorbed in theamplitudes Ai, so that the formulas are valid both for the level density and the 
ondu
tan
eand also for systems with 
ontinuous symmetries.On the real side far from the bifur
ation, the uniform approximation Eq. (B.7) 
an, asalready pointed out, be implemented dire
tly in a numeri
al 
al
ulation. In this region,�A, �A, �S and �S 
an be determined from the properties of the 
lassi
al orbits, using thede�nitions Eqs. (B.2). Close to the bifur
ation the numeri
al evaluation of �A fails, sin
ethe amplitudes diverge at this point. There, however, Eqs. (B.3) (with the parametersadapted as des
ribed above) yield the 
orre
t lo
al behavior. This lo
al form also holdsfor the 
omplex side of the bifur
ation. Sin
e �S in
reases like "3=2, the 
ontribution onthe 
omplex side a

ording to Eq. (B.8) goes to zero. This ensures that the numeri
alextrapolation reprodu
es the 
orre
t Gutzwiller limit on the 
omplex side. The only dif-feren
e to the analyti
 uniform approximation is the intermediate 
omplex regime. There,however, the 
ontributions are strongly suppressed, so that the deviation is small.The 
rossover between the lo
al normal form and the dire
t orbit data is preferably im-plemented by a a linear interpolation between these two des
riptions. Choosing for this
rossover approximately half the region used for the parameter �t above, the 
rossover issmooth. This is simply be
ause the two methods are by 
onstru
tion well adapted in thisregime.The results are depi
ted for a typi
al tangent bifur
ation of the 
hannel system in Fig. B.1.The a
tion is s
aled by a fa
tor of 10 for 
larity. The solid lines in the insets show the lo
albehavior of the quantities of Eqs. (B.3). The 
orresponding linear �t3 is indi
ated by thedashed line. The main graph shows the Gutzwiller result (thin) and the numeri
al uniformapproximation (heavy), whi
h reprodu
es the Gutzwiller data far from the bifur
ation.The spurious divergen
e is, indeed, removed, and de
aying 
ontributions from ghost orbitsare in
luded.3The plotted range in B is approximately 5 times the optimal �t region, so that the nonlinearities 
an
learly be seen.
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ation of Fig. 4.4, with a
tion s
aled by a fa
tor of10. Thin: Gutzwiller result, heavy: numeri
al uniform result. The insets show thebehavior of the quantities of Eqs. (B.3) (solid) and their linear �t (dashed).B.2 Pit
hfork bifur
ationThe normal form of the period-doubling bifur
ation implies the following lo
al behavior:S1 = S0 + "24a �1 + 
"2 �Tr0 := Tr(M0) = 2 � 2�"Tr1 := Tr(M1) = 2 + 4�" � 3
�"2 : (B.9)Here (and in the following) the subs
ript 0 denotes the 
entral orbit, and the subs
ript1 the two orbits4 that split o� at the bifur
ation. In 
ontrast to the tangent bifur
ationdis
ussed above, here the 
entral orbit is real on both sides of the bifur
ation. Thereforethe mapping between " (the parameter of the normal form driving the system throughthe bifur
ation) and B (the physi
al parameter varied a
ross the bifur
ation) 
an be leftimpli
it by substituting " with �(1 � Tr0=2).It is again ne
essary to 
arefully adapt the �t ranges, sin
e both 
lose to and far fromthe bifur
ation the errors in
rease. Therefore the parameters are again determined usingsuitable linear relations. The absolute value of the parameter 
 is readily �tted byp6� (2Tr0 + Tr1) = pj3
j j1� Tr0=2j : (B.10)It is 
onvenient to de�ne the fa
tors �, �1 and �2, whi
h only 
ontain sign informations. �2is 1 on the real side (i. e. where both the 
entral orbit and the satellites exist 
lassi
ally),and �1 on the 
omplex side of the bifur
ation. � and �1 refer to properties of the realside of the bifur
ation. �1 is given by the sign of (S1�S0), and � = �1 if the 
entral orbitis unstable, and � = ��1 otherwise. The sign of 
 
an be determined on the real side bysign(
) = � sign [6� (2Tr0 + Tr1)℄ : (B.11)4This 
orresponds to the 
hannel with antidots 
onsidered in this work. For generi
 systems withoutdis
rete symmetries, there is one satellite orbit with twi
e the period.



B.2 Pit
hfork bifur
ation xvUsing�S := S1 � S02 = 18a �1� Tr02 �2 �1 + 
�2 �1� Tr02 �� ; (B.12)the parameter a 
an be evaluated by another linear �t. The Maslov index � in the uniformapproximation is given by the Maslov index of the 
entral orbit where it is unstable.5 Theuniform approximation for the period doubling bifur
ation is most easily written downde�ning the amplitudesAi = kipjTri � 2j ; (B.13)(where the ki 
ontain all prefa
tors of the tra
e formula, in
luding the degenera
y of theorbit) and their linear 
ombinationsA+ := �A12 + A0p2� and A� := �A12 � A0p2� : (B.14)Using these quantities, the uniform approximation reads [70℄Æ = r�2 j�Sj Re" exp �in �S � ��2 � ��4o�� (B.15)nA+ ��2J1=4(j�Sj)ei�1�=8 + J�1=4(j�Sj)e�i�1�=8 �+A� � J3=4(j�Sj)ei�13�=8 + �2J�3=4(j�Sj)e�i�13�=8�o# :The numeri
al evaluation is similar to the 
ase of the tangent bifur
ation. On the sidewhere all orbits are real, A+; A�;�S and �S 
an be determined dire
tly from the numeri
alorbit data. Near the bifur
ation, where the amplitudes diverge and their near-
an
ellation
auses numeri
al problems, A� 
an be approximated viaA+ = k02pj1 � Tr0=2j  2pj4� 3
�(1� Tr0=2)j + 1!A� = k02pj1 � Tr0=2j  2pj4� 3
�(1� Tr0=2)j � 1! : (B.16)Here it was used that k1 = 2k0 at the bifur
ation. �S 
an dire
tly be extrapolated withEq. (B.12), and �S via �S := (S0 + S1)=2 = S0 +�S. These formulae 
an also be used onthe 
omplex side in the vi
inity of the bifur
ation. To ensure the 
orre
t Gutzwiller limiton that side, the numeri
ally determined properties of the 
entral orbit should be used farfrom the bifur
ation. �S and �S 
an be 
al
ulated as above, and the ghost amplitude isextrapolated byA1 = 2k0pj1 � Tr0=2j 1pj4 � 3
�(1 � Tr0=2)j : (B.17)5The 
entral orbit is unstable on the real side of the bifur
ation if ��1 = 1 and on the 
omplex sideotherwise.



xvi Chapter 2: Numeri
al uniform approximationThese approximations are only valid for 
�(1 � Tr0=2) � 4=3. At 
�(1 � Tr0=2) = 4=3the lo
al expansions of �S and A1 exhibit a spurious divergen
e. If on the 
omplexside 
�(1 � Tr0=2) > 0, this leads to a spurious divergen
e of the numeri
al bifur
ationtreatment. The limit far from the bifur
ations, however, is reprodu
ed 
orre
tly6. Inthis work, the spurious divergen
e therefore was simply suppressed. Again, the errorintrodu
ed is tolerable, sin
e both the lo
al behavior at the bifur
ation and the Gutzwillerlimit for isolated orbits is 
orre
tly reprodu
ed. In the intermediate 
omplex regime, wherethe in
lusion of the ghost orbit in the numeri
al approa
h is not exa
t, its 
ontribution issuppressed with aj1� Tr0=2j�5=2.The result of the numeri
al treatment of a period doubling bifur
ation for the 
hannelsystem is plotted in Fig. 4.4(b,
) of Se
. 7.4.4.2. As for the tangent bifur
ation, far fromthe bifur
ation the Gutzwiller 
ontributions are reprodu
ed, and the divergen
e at thebifur
ation is removed.

6For �S !1 the satellite terms in Eq. (B.15) exa
tly 
an
el.


