
Appendix BNumerial uniform approximationThe uniform approximation as presented by Shomerus and Sieber [70, 73℄ requires know-ledge about the properties of the ghost orbits. This information is not available in anumerial alulation. Therefore it is desirable to develop a modi�ed approah whih onlyneeds data that an be aessed numerially.The derivation of Sieber and Shomerus starts from the normal form of the bifuration.They express their parameters in terms of the quantities whih enter the Gutzwiller traeformula. On the side of the bifurations where all orbits are real, their formulas andiretly be evaluated numerially. In the following, a tehnique for a numerial aess tothe omplex side is presented. It onsists of a �t of the parameters of the loal form. Thenormal form is then extrapolated to the omplex regime in a way that ensures the orretlimiting behavior far from the bifuration. This makes the numerial approah uniformin the sense that both the loal behavior at the bifuration and the Gutzwiller limit arereprodued orretly.This proedure is derived for the two types of bifurations ourring in the annel system,namely the tangent (or isohronous) and the period doubling (or pithfork) bifuration.B.1 Tangent bifurationThe normal form of the tangent bifuration implies the following loal behavior of theation1 S and the amplitudes A of the two orbits engaged in the bifuration [70℄:S1;2 = S0 � 2"3 r� "3a � b"29a2 ;A1;2 = 1j12a"j1=4 �A0 � r� "3a� : (B.1)Considering the level density, A0 is given by the period T0 of the orbit; in ase of theondutane, A0 is the veloity-veloity orrelation funtion (see Eqs. (2.14) and (5.4))." is the parameter whih is varied aross the bifuration. It is zero at the bifuration1For a simple notation, the ations are given in units of �h in this appendix.J. Blashke, Ph.D. Thesis Regenesburg, 1999 published under http://www.joahim-blashke.de



xii Chapter B: Numerial uniform approximationitself and negative on the real side (i. e. the side of the bifuration where the orbits existlassially). It will be onvenient to de�ne the quantities�A := A1 + A22A0 ; �A := A1 �A22A0 ;�S := S1 + S22 ; �S := S1 � S22 : (B.2)Using that S0 generially has a dominant linear dependene on ", the loal behavior atthe bifuration aording to Eq. (B.1) an be written asj �Aj�4=�1j"j ; j�Aj4 =�2j"j ;�S = �S0 + �4" ; j�Sj2=3 =�3j"j : (B.3)For �A the higher-order terms in " stemming from a variation of  are negleted here.Either of the �rst three relations an be used to de�ne the mapping between " and thephysial quantity varied aross the bifuration (whih is the magneti �eld B in the presentsystem). This mapping has to be extrapolated to the omplex region. For the systemonsidered in this work, the linear term of this mapping strongly dominates, so thathigher-order ontributions ould be negleted. This approximation is equivalent to theansatz" = �(B �Bbif) : (B.4)The linear relations Eqs. (B.3) together with Eq. (B.4) allow to determine the parameters�1�4, �S0 and Bbif using straight-line �ts.2 This is numerially more onvenient than usingthe original expressions Eqs. (B.1). Data points lose to the bifurations have a limitednumerial auray, sine it is diÆult to onverge to a marginally stable orbit (there thetehnique using the stability matrix fails due to vanishing �rst derivatives). Far fromthe bifuration, the leading-order approximations of Eq. (B.1) no longer hold. So priorto the �t of the parameters of the loal normal form, the �t region has to be adapted.Straight-line �ts are numerially very stable and an be used both for the determinationof the optimal �t region and for the �t of the parameter themselves. The upper as well asthe lower limit of the �t-range were hosen for a minimal error in the slopes.Eqs. (B.3) give only the absolute values for �A;�A and �S. The signs of these quantitiesan be omitted if the following fators are introdued:�1 := sign(�S) ; �2 := sign(�A) : (B.5)These are readily alulated on the real side of the bifuration.The Maslov index of the bifuration is given by the average of the Maslov indies of thetwo orbits involved� = (�1 + �1)=2 : (B.6)2The parameters are atually over-determined by Eqs. (B.3), sine Bbif an be extrated from either ofthe three �rst equations. This gives a onvenient additional error ontrol.



B.2 Tangent bifuration xiiiIn these quantities the uniform approximation for the tangent bifuration reads [70℄Æ = r2�3 j�Sj � " j �Aj�J�1=3(j�Sj) + J1=3(j�Sj)	 os� �S � ��2� (B.7)��1�2j�Aj�J�2=3(j�Sj) � J2=3(j�Sj)	 os� �S � (�� 1)�2�#on the real side, andÆ = r 2� j�Sj � " j �AjK1=3(j�Sj) os � �S � ��2� (B.8)��j�AjK2=3(j�Sj) os � �S � (�� 1)�2 �#on the omplex side. All prefators (inluding the degeneray) have been absorbed in theamplitudes Ai, so that the formulas are valid both for the level density and the ondutaneand also for systems with ontinuous symmetries.On the real side far from the bifuration, the uniform approximation Eq. (B.7) an, asalready pointed out, be implemented diretly in a numerial alulation. In this region,�A, �A, �S and �S an be determined from the properties of the lassial orbits, using thede�nitions Eqs. (B.2). Close to the bifuration the numerial evaluation of �A fails, sinethe amplitudes diverge at this point. There, however, Eqs. (B.3) (with the parametersadapted as desribed above) yield the orret loal behavior. This loal form also holdsfor the omplex side of the bifuration. Sine �S inreases like "3=2, the ontribution onthe omplex side aording to Eq. (B.8) goes to zero. This ensures that the numerialextrapolation reprodues the orret Gutzwiller limit on the omplex side. The only dif-ferene to the analyti uniform approximation is the intermediate omplex regime. There,however, the ontributions are strongly suppressed, so that the deviation is small.The rossover between the loal normal form and the diret orbit data is preferably im-plemented by a a linear interpolation between these two desriptions. Choosing for thisrossover approximately half the region used for the parameter �t above, the rossover issmooth. This is simply beause the two methods are by onstrution well adapted in thisregime.The results are depited for a typial tangent bifuration of the hannel system in Fig. B.1.The ation is saled by a fator of 10 for larity. The solid lines in the insets show the loalbehavior of the quantities of Eqs. (B.3). The orresponding linear �t3 is indiated by thedashed line. The main graph shows the Gutzwiller result (thin) and the numerial uniformapproximation (heavy), whih reprodues the Gutzwiller data far from the bifuration.The spurious divergene is, indeed, removed, and deaying ontributions from ghost orbitsare inluded.3The plotted range in B is approximately 5 times the optimal �t region, so that the nonlinearities anlearly be seen.



xiv Chapter B: Numerial uniform approximation
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B1 B2 B1 B2Figure B.1: The tangent bifuration of Fig. 4.4, with ation saled by a fator of10. Thin: Gutzwiller result, heavy: numerial uniform result. The insets show thebehavior of the quantities of Eqs. (B.3) (solid) and their linear �t (dashed).B.2 Pithfork bifurationThe normal form of the period-doubling bifuration implies the following loal behavior:S1 = S0 + "24a �1 + "2 �Tr0 := Tr(M0) = 2 � 2�"Tr1 := Tr(M1) = 2 + 4�" � 3�"2 : (B.9)Here (and in the following) the subsript 0 denotes the entral orbit, and the subsript1 the two orbits4 that split o� at the bifuration. In ontrast to the tangent bifurationdisussed above, here the entral orbit is real on both sides of the bifuration. Thereforethe mapping between " (the parameter of the normal form driving the system throughthe bifuration) and B (the physial parameter varied aross the bifuration) an be leftimpliit by substituting " with �(1 � Tr0=2).It is again neessary to arefully adapt the �t ranges, sine both lose to and far fromthe bifuration the errors inrease. Therefore the parameters are again determined usingsuitable linear relations. The absolute value of the parameter  is readily �tted byp6� (2Tr0 + Tr1) = pj3j j1� Tr0=2j : (B.10)It is onvenient to de�ne the fators �, �1 and �2, whih only ontain sign informations. �2is 1 on the real side (i. e. where both the entral orbit and the satellites exist lassially),and �1 on the omplex side of the bifuration. � and �1 refer to properties of the realside of the bifuration. �1 is given by the sign of (S1�S0), and � = �1 if the entral orbitis unstable, and � = ��1 otherwise. The sign of  an be determined on the real side bysign() = � sign [6� (2Tr0 + Tr1)℄ : (B.11)4This orresponds to the hannel with antidots onsidered in this work. For generi systems withoutdisrete symmetries, there is one satellite orbit with twie the period.



B.2 Pithfork bifuration xvUsing�S := S1 � S02 = 18a �1� Tr02 �2 �1 + �2 �1� Tr02 �� ; (B.12)the parameter a an be evaluated by another linear �t. The Maslov index � in the uniformapproximation is given by the Maslov index of the entral orbit where it is unstable.5 Theuniform approximation for the period doubling bifuration is most easily written downde�ning the amplitudesAi = kipjTri � 2j ; (B.13)(where the ki ontain all prefators of the trae formula, inluding the degeneray of theorbit) and their linear ombinationsA+ := �A12 + A0p2� and A� := �A12 � A0p2� : (B.14)Using these quantities, the uniform approximation reads [70℄Æ = r�2 j�Sj Re" exp �in �S � ��2 � ��4o�� (B.15)nA+ ��2J1=4(j�Sj)ei�1�=8 + J�1=4(j�Sj)e�i�1�=8 �+A� � J3=4(j�Sj)ei�13�=8 + �2J�3=4(j�Sj)e�i�13�=8�o# :The numerial evaluation is similar to the ase of the tangent bifuration. On the sidewhere all orbits are real, A+; A�;�S and �S an be determined diretly from the numerialorbit data. Near the bifuration, where the amplitudes diverge and their near-anellationauses numerial problems, A� an be approximated viaA+ = k02pj1 � Tr0=2j  2pj4� 3�(1� Tr0=2)j + 1!A� = k02pj1 � Tr0=2j  2pj4� 3�(1� Tr0=2)j � 1! : (B.16)Here it was used that k1 = 2k0 at the bifuration. �S an diretly be extrapolated withEq. (B.12), and �S via �S := (S0 + S1)=2 = S0 +�S. These formulae an also be used onthe omplex side in the viinity of the bifuration. To ensure the orret Gutzwiller limiton that side, the numerially determined properties of the entral orbit should be used farfrom the bifuration. �S and �S an be alulated as above, and the ghost amplitude isextrapolated byA1 = 2k0pj1 � Tr0=2j 1pj4 � 3�(1 � Tr0=2)j : (B.17)5The entral orbit is unstable on the real side of the bifuration if ��1 = 1 and on the omplex sideotherwise.



xvi Chapter 2: Numerial uniform approximationThese approximations are only valid for �(1 � Tr0=2) � 4=3. At �(1 � Tr0=2) = 4=3the loal expansions of �S and A1 exhibit a spurious divergene. If on the omplexside �(1 � Tr0=2) > 0, this leads to a spurious divergene of the numerial bifurationtreatment. The limit far from the bifurations, however, is reprodued orretly6. Inthis work, the spurious divergene therefore was simply suppressed. Again, the errorintrodued is tolerable, sine both the loal behavior at the bifuration and the Gutzwillerlimit for isolated orbits is orretly reprodued. In the intermediate omplex regime, wherethe inlusion of the ghost orbit in the numerial approah is not exat, its ontribution issuppressed with aj1� Tr0=2j�5=2.The result of the numerial treatment of a period doubling bifuration for the hannelsystem is plotted in Fig. 4.4(b,) of Se. 7.4.4.2. As for the tangent bifuration, far fromthe bifuration the Gutzwiller ontributions are reprodued, and the divergene at thebifuration is removed.

6For �S !1 the satellite terms in Eq. (B.15) exatly anel.


