
Appendix ANumeri
al evaluation of periodi
orbitsThis te
hni
al appendix des
ribes numeri
al te
hniques to deal with 
lassi
al periodi
orbits. EÆ
ient methods for �nding those orbits, 
al
ulating the relevant propertiesfor the tra
e formula, and following them through parameter spa
e are presented.
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ii Chapter A: Numeri
al evaluation of periodi
 orbitsA.1 Finding periodi
 orbitsThe numeri
al determination of periodi
 orbits in an arbitrary potential in
ludes threesteps:1. Integration of the 
lassi
al equations of motion (EOM).2. Cal
ulation of the variation of the endpoint for small 
hanges of the starting point.3. Cal
ulating an improved starting point.Beginning with randomly distributed starting points, these steps are iterate until 
onver-gen
e.A.1.1 Integrating the equations of motionThe equations of motion are readily integrated numeri
ally. For a suÆ
ient performan
eof this innermost step in the semi
lassi
al 
al
ulation an eÆ
ient s
heme with adaptivestep-size 
ontrol should be implemented. For smooth potentials, the algorithm presentedby Bulirs
h and Stoer [104, 107℄ is a

epted to be one of the most powerful methodsavailable.A.1.2 The matrizantCal
ulating the e�e
t of a small 
hange of the starting point by integrating traje
toriesat small, but �nite distan
es su�ers from severe numeri
al limitations. The numeri
alroundo� gets worse for larger jTr(fM)j and is intolerable already for moderately unstableorbits. E
khardt and Wintgen [25℄ presented a method whi
h is better adapted to thelimitations of a numeri
al approa
h. It will be outlined in the following.Denoting the phase spa
e ve
tor of the referen
e traje
tory with 
 = (q;p) with the
oordinates q and the 
anoni
al 
onjugate momenta p, the EOM 
an be written as_
 = J �H�
 with J := � 0 I1�I1 0 � : (A.1)Here and in the following, the dots signify derivatives with respe
t to time. The linearizedtime evolution of the di�eren
e ve
tor to the referen
e orbit Æ
 is given byÆ
(t) = �(t) Æ
(0) ; (A.2)with the matrizant �. The time evolution of � 
an be shown to be_� = L � � with L(t) = J �2H�
2 ����
(t) ; (A.3)and �(0) = I1. For periodi
 orbits, the monodromy matrix1 M is de�ned as M = �(T ),where T is the period of the orbit.1To be 
onsistent with the standard notation in tra
e formulae, the monodromy matrix is denotedwithout unders
ore.



A.1 Finding periodi
 orbits iiiThe matrizant is symple
ti
, i. e. �yJ � = J , and two eigenvalues of � are equal to 1 (seeEq. (A.5) below). One of these trivial eigenvalues is asso
iated with energy 
onservation,the other with the displa
ement along the traje
tory. The 
orresponding eigenve
tors 
anbe eliminated analyti
ally. This will be sket
hed in the following for two dimensionalsystems. From now on, 
 = (x; y; u; v).Introdu
ing a lo
al 
oordinate system by the unitary transformation U(t) a

ording toÆb
 = U(t) Æ
 with U (t) = 0BB� _x � _u=q2 � _y � _v=q2_y � _v=q2 _x _u=q2_u _x=q2 _v � _y=q2_v _y=q2 � _u _x=q2 1CCA ; (A.4)where q = j _
j leads to a transformed matrizantÆb
(t) = b�(t) Æb
(0) with b�(t) = U�1(t)�(t)U (0) = 0BB� 1 � � �0 1 0 00 �0 � e�(t) 1CCA : (A.5)In this 
oordinate system the two eigenvalues of 1 
an be seen expli
itly. The time evolutionof the redu
ed matrizant e�(t) is given by_e�(t) = l(t) e�(t) with l = U�1(LU � _U) : (A.6)Denoting the partial derivatives of the Hamiltonian by subs
ripts, i. e. Hx = �H=�x, thematrix l is expli
itly given byl = � l11 l12l21 l22 � ; with (A.7)l11 = �(�Hxx �Hyy +Huu +Hvv)(HxHu +HyHv)+(�H2x +H2y +H2u �H2v )(Hyv +Hxu) + 2(HxHy �HuHv)(Hxv +Hyu)�=q2l12 = �(Hxx +Hvv)(H2y +H2u) + (Hyy +Huu)(H2x +H2v )�2(HxHu +HyHv)(Hxu +Hyv) � 2(HxHy �HuHv)(Hxy �Huv)�=q4l21 = �� (Hxx +Hyy)(H2u +H2v ) � (Huu +Hvv)(H2x +H2y )+2(HxHv +HyHu)(Hxv +Hyu) + 2(HxHu �HyHv)(Hxu �Hyv)�l22 = �l11 :These formulae have been derived by E
khardt and Wintgen [25℄. They shall now beapplied to a parti
le in a homogeneous magneti
 �eld and a velo
ity-independent externalpotential V . For this situation, it is 
onvenient to express l in dependen
e of the real spa
e
oordinates and their time derivatives. This �nally leads tol11 = �2� w2
=2 � Vxx � Vyy� ( _xVx + _yVy) =q2 (A.8)l12 = �1 + (w
=2)2� =q2 + �Vxx( _x2 + �2) + Vyy( _y2 + �2) + 2Vxy( _x _y � ��)� =q4l21 = � �Vxx + Vyy + w2
=2� � _x2 + _y2�� 2 ��2 + �2�l22 = �l11 :



iv Chapter A: Numeri
al evaluation of periodi
 orbitswith w
 = eB=m?, � = (Vx � _yw
=2) and � = (Vy + _xw
=2). Starting from the initial
ondition e�(0) = I1, Eq. (A.6) 
an be integrated. The most e�e
tive approa
h is to solvethe equations of motion for e� and the time evolution of the traje
tory simultaneously.This leads to four equations for the phase-spa
e motion and another four for e�. Withoutredu
tion of the matrizant to two dimensions, a (4 � 4 + 4 =) 20-dimensional di�erentialequation has to be solved. This integration is the innermost loop of the 
al
ulation, sothat the analyti
al redu
tion of the monodromy matrix speeds up the the semi
lassi
alapproximation by a fa
tor of about 2.The matrizant gives the linearization of arbitrary deviations from 
(t). In the followingse
tion this information will be used in a numeri
al s
heme to 
onverge to periodi
 orbits.A.1.3 Improving the initial 
onditionTo identify an orbit with a unique starting point, an additional plane in phase spa
e, thePoin
ar�e surfa
e of se
tion P, has to be de�ned. Starting with a random initial 
onditionon P, the traje
tory and the redu
ed matrizant 
an be integrated as explained in theprevious se
tion. Having found another interse
tion with P 
lose to the starting point,the redu
ed matrizant should be used to improve the initial 
ondition.For a simple notation, 
 is the phase spa
e ve
tor (x; y; u; v) as given above, and the initialand �nal point are denoted by 
i and 
f , respe
tively. The 
orresponding ve
tors in thelo
al 
oordinate system are given by b
i = U�1(0)
i and b
f = U�1(T )
f .2 The se
ondpart of b
 = (b
1; b
2; b
3;b
4), is denoted by e
 := (b
3; b
4). Starting at a distan
e Æe
 to theinitial point results, a

ording to the de�nition of e� in Eq. (A.5), in a deviation �e
 = e� Æe
from the �nal point. If the new starting point 
orresponds to a periodi
 orbit, i. e.e
i + Æe
 != e
f +�e
) Æe
 = ( I1 � e�)�1 (e
f � e
i) : (A.9)All quantities on the r.h.s. of Eq. (A.9) are known expli
itly, so that the ne
essary 
or-re
tion Æe
 = (e
3; e
4) leading to a periodi
 
an be 
al
ulated. Note that by the redu
tionto 2D no information is lost, sin
e the two omitted basisve
tors have eigenvalues 1. The
orre
tion Æe
 
an now be transformed ba
k to the ordinary phase spa
e 
oordinates viaÆ
 = U(0) Æb
 , where Æb
 := (0; 0; e
3; e
4). This step introdu
es an additional error, sin
ethe lo
al 
oordinate system of neither the initial point U(0), nor of the �nal point U(T )but of the new starting point gives the 
orre
t transformation. In pra
ti
e, however, thedi�eren
e is insigni�
ant.3 Apart from that small error, Æb
 is equivalent to the result of a
al
ulation using the full 4D matrizant.Taking 
 = 
i + Æ
 as the new starting point unfortunately1. leaves the Poin
ar�e surfa
e of se
tion.This is asso
iated with the fa
t that the periodi
 orbit may have another period asthe referen
e orbit. The initial 
orre
tion therefore has to be extrapolated onto thePoin
ar�e surfa
e a

ording to Æb
 + Æt � _
 2 P :2Please note that for non-
losed orbits the lo
al 
oordinate system for initial and �nal point are di�erent.3The best approximation feasible at this stage is a linear interpolation between the lo
al 
oordinatesystems. This does not improve the 
onvergen
e.



A.2 Properties of the orbits v2. violates energy 
onservation.The matrizant des
ribes the linearization of deviations from the referen
e orbit, andthus is only energy 
onserving to linear order. To prevent a shift of energy, thestarting 
ondition has to be proje
ted ba
k on the energy surfa
e.4In
luding these two proje
tion pro
edures, 
 = 
i + Æ
proje
ted gives an improved initial
ondition.A.1.4 Converging to a periodi
 orbitIn the linear regime of a periodi
 orbit, the s
heme of the pre
eding se
tion 
onverges ina single step. If the initial 
ondition is outside the linear regime, the pro
edure has tobe iterated. Usually a few iteration steps (< 10) are suÆ
ient to determine the initial
ondition within ma
hine a

ura
y (i. e. � 10�13). In 
losed systems nearly all starting
onditions 
onverge to a periodi
 orbit, so that periodi
 orbits are easily found. For opensystems the traje
tories have a �nite probability to leave the system. This leads to anin
reased numeri
al e�ort, sin
e several starts are needed to 
onverge to a periodi
 orbit.For the 
hannel the probability for a traje
tory to leave the 
entral antidot regime is solarge that only a small fra
tion of initial 
onditions 
onverges.To 
onverge to those unstable �xpoints whose in
oming and outgoing manifold interse
ton the Poin
ar�e surfa
e of se
tion at an extremely small angle, it is sometimes useful toadd only a fra
tion 0 < � < 1 of the 
al
ulated 
orre
tion to the initial 
ondition, i. e.
 = 
i + �Æ
proje
ted. This enlarges the radius of 
onvergen
e for these spe
ial �xpoints,but also in
reases the number of iterations required.Starting the above pro
edure with random points does not assure to �nd all periodi
orbits in the system. The most relevant, however, are those with large amplitudes. Thesehave a large radius of 
onvergen
e, so that the probability of missing an important orbitis small. It 
an be further redu
ed by following the orbits through parameter spa
e.Thereby one 
an 
onveniently 
he
k that no orbit is missed at a bifur
ation. Furthermore,orbits 
an frequently be 
lassi�ed. For the 
hannel system, the number of re
e
tionsin the 
onstri
tions together with the symmetry of the orbit gives su
h a 
lassi�
ation.Missing orbits 
an readily be identi�ed in su
h a s
heme. All this establishes no proof,but 
ombining these three methods 
an assure beyond reasonable doubt that the relevantorbits have been in
luded.A.2 Properties of the orbitsOn
e the above algorithm has 
onverged, the properties of the newly determined periodi
orbit have to be 
al
ulated. For the appli
ation of the tra
e formula the a
tion S, thedeterminant of the monodromy matrix M , the period T0, the Maslov index � and thevelo
ity-velo
ity 
orrelation fun
tions Cij have to be evaluated. In systems with dis
retesymmetries, also the symmetry-related degenera
ies have to be known.4In pra
ti
al appli
ations it is often unne
essary to 
al
ulate the normal ve
tor of the energy surfa
e.It is generally suÆ
ient to in
lude the 
orre
tion to the (absolutely) smaller 
omponent of the momentum(Æu or Æv) dire
tly, and to determine the se
ond momentum 
omponent from energy 
onservation. Thissimpli�
ation has hardly any in
uen
e on the 
onvergen
e properties.



vi Chapter A: Numeri
al evaluation of periodi
 orbitsA.2.1 Period, a
tion, stability and degenera
yThe period T0 is automati
ally 
al
ulated when integrating the equations of motion. Thea
tion 
an be integrated straight-forward usingS = Z T00 p dq = Z T00 p _q dt ; (A.10)with p = (x; y) and q = (u; v).The stability of an orbit enters the tra
e formula via Det(M� I1). The monodromy matrixM is identi
al to the matrizant after one period, i. e. M = �(T0). The determinant isneither a�e
ted by the unitary transformation U , nor by the redu
tion to two dimensions,sin
e the omitted eigenvalues are 1. ThereforeDet(� � 1) = Det(b�� 1) = Det(e� � 1) = 2� Tr(e�) ; (A.11)so that Det(M � I1) 
an be identi�ed with 2 � Tr(fM). The stability matrix fM is given bythe redu
ed matrizant e� at T = T0. The latter is already known from the 
onvergen
epro
edure.The symmetry of an orbit 
an be determined numeri
ally by 
al
ulating the interse
tionswith suitable Poin
ar�e surfa
es of se
tion. These have to be 
hosen a

ording to the pos-sible symmetries of the orbits, i. e. the symmetries of the system. Close to a bifur
ation,however, the asymmetry of an orbit 
an be in�nitesimal small, and thus 
overed by thenumeri
al ina

ura
ies. Due to these limitations, the degenera
y 
annot be determinednumeri
ally in the vi
inity of a bifur
ation. The degenera
y and the Maslov index of anorbit 
hange only at bifur
ation points. Following the orbits through parameter spa
e(see appendix A.3), these quantities 
an 
onveniently be 
al
ulated suÆ
iently far from abifur
ation.The 
hannel 
onsidered in this work exhibits three dis
rete symmetries: with respe
t tore
e
tion at the x-axis, the y-axis and the 
ombination of these re
e
tions, i. e. a rotationby �. A 
onvenient Poin
ar�e surfa
e is given by y = 0. The orbits have anyway tobe 
al
ulated for varying B and sd in order to 
ompare with the experimental �ndings.Therefore 
hoosing B and sd to be far from bifur
ations does not lead to additionalnumeri
al e�ort.A.2.2 Velo
ity-velo
ity 
orrelation fun
tionA ni
e idea5 to redu
e the numeri
al e�ort 
al
ulating Cij is to express the velo
ity of theperiodi
 orbit as a Fourier sumvi(t) = �vi + 1Xn=1 [ai;n sin(nwt) + bi;n 
os(nwt)℄ ; (A.12)where w = 2�=T0, T0 is the period of the orbit, and i stands for either x or y. Insertingthis expression in Eq. (5.7), all integrations 
an be performed analyti
ally. The �nal resultreads Cij = T02 1Xn=1 (ai;n aj;n + bi;n bj;n)=�s � (ai;n bj;n � aj;n bi;n)nw(1=�s)2 + (nw)2 : (A.13)5This idea of U. R�o�ler was 
ommuni
ated by R. Onderka.



A.2 Properties of the orbits viiThe 
oeÆ
ients an and bn 
an be 
al
ulated from the integralsai;n = 2T0 Z T00 vi(t) sin(nwt) dt and (A.14)bi;n = 2T0 Z T00 vi(t) 
os(nwt) dt :These integrations 
an again be performed simultaneously with the integration of theEOM.A 
onvenient method to 
he
k the 
onvergen
e of the Fourier sum Eq. (A.12) is given byParseval's theorem. For this spe
ial 
ase it readsZ T00 jvi(t)j2 = 2T 1Xn=1 �(ai;n)2 + (bi;n)2� : (A.15)In a numeri
al integration, where Eq. (A.12) has to be trun
ated, this relation allows anumeri
al 
al
ulation of the trun
ation error.In the 
ase of the 
hannel system, all orbits are similar to 
y
lotron orbits. This leadsto rapidly de
aying higher harmoni
s. Furthermore, the �rst term in Eq. (A.13) 
an benegle
ted for those traje
tories. This simpli�es the 
al
ulation of Cij toCxx � T0�s2 1Xn=1 (ax;n)2 + (bx;n)21 + (nw�s)2 and (A.16)Cxy � T0�s2 1Xn=1 ay;n bx;n + ax;n by;n1 + (nw�s)2 nw�s :For w�s > 1 , the higher Fourier 
omponents are additionally damped by the fa
tor1=(nw�s). This is ful�lled for the 
hannel with antidots 
onsidered in 
hapter 7. Thereforethe in
lusion of the leading 5 Fourier 
omponents was suÆ
ient.Note that the 
al
ulation of N Fourier 
omponents leads to 4N additional di�erentialequations whi
h have to be solved simultaneously to the EOM. It is therefore indi
ated to
al
ulate only 
 and fM while 
onverging to a periodi
 orbit, and to integrate the 
ompletesystem of di�erential equations (in
luding the a
tion, the stability angle and the Fourier
omponents) only on
e for ea
h (
onverged) orbit.A.2.3 Maslov indexThe Maslov index is a geometri
al winding number [22, 66℄. This property will be usedin the following for its numeri
al evaluation. The pro
edure presented here is similar tothe one of E
khardt and Wintgen [25℄, but it is numeri
ally more 
onvenient. It is mu
heasier to implement than the general method presented by Creagh and Robbins [22, 66℄.6It is, however, restri
ted to two dimensional systems.6Their approa
h is presented in a version a

essible to numeri
al 
al
ulations in Ref. [100℄.



viii Chapter A: Numeri
al evaluation of periodi
 orbits
*

*

*

*

*

*

(A) (B)

Figure A.1: Lo
al phase spa
e portraits around aperiodi
 orbit. (A) Stable, (B) unstable orbit.
A periodi
 orbit is a �xpoint of the map-ping of the Poin
ar�e surfa
e of se
tiononto itself. The lo
al linearization ofthe mapping is given by the redu
ed sta-bility matrix7. Starting with a small de-viation from the periodi
 orbit 
 whi
h
orresponds to an eigenve
tor of fM , thisdeviation winds around 
. The totalwinding angle � is related to the Maslovindex. This relation is di�erent for thedi�erent types of �xpoints, i. e. periodi
 orbits. The lo
al behavior around the �xpoint
an easily be 
lassi�ed in dependen
e of the eigenvalues m1;m2 of the stability matrix fM :stable orbits $ jm1j = jm2j = 1; Fig. A.1(A).An orbit in the vi
inity of a stable orbit remains on a ellipse around the �xpoint.All these ellipses map onto themselves. For stable orbits, the tra
e of the stabilitymatrix is absolutely smaller than 2.hyperboli
ally unstable orbits $ m1 = 1=m2 > 1; Fig. A.1(B).Two lines in the Poin
ar�e se
tion map onto ea
h other. Starting on one of these,the distan
e of the interse
tion points to the �xpoint exponentially grows (m > 1,outgoing manifold) or shrinks (m < 1, in
oming manifold). Hyperboli
ally unstableorbits have Tr(fM ) > 2.inverse hyperboli
 orbits $m1 = 1=m2 < �1Equivalent to the hyperboli
 
ase, but the interse
tion points 
hange the side of the�xed point with ea
h revolution. The tra
e of fM of these orbits is smaller than -2.For two dimensional unstable orbits the winding angle � is identi
al for all initial de-viations, and a multiple of � (even multiple for the hyperboli
, and odd for the inversehyperboli
 
ase). This is obvious, sin
e both the in
oming manifold and the outgoingmanifold map onto itself. The stability matrix is linear, so that this also holds for alllinear 
ombinations of these ve
tors, i. e. the whole surfa
e of se
tion.For stable orbits, � is given by the winding angle of an eigenve
tor of fM . Now the windingangle is not a multiple of �, and it depends on the initial deviation. The 
ommon wayto determine the winding angle is therefore to 
al
ulate �rst an eigenve
tor of fM , andto propagate this along the periodi
 orbit. This pro
edure 
an be simpli�ed, so that asingle integration yields �. This approa
h uses di�erent informations about �, whi
h are
ombined to uniquely de�ne the winding angle.The starting point is to write fM as the produ
t of a rotation and a positive de�nitesymmetri
 matrix T :fM = T � 
os(') sin(')� sin(') 
os(') � : (A.17)7Stri
tly speaking, the redu
ed (2D-) stability matrix is a mapping of the plane perpendi
ular to theorbit (at the initial point) and the energy surfa
e onto itself. This distin
tion is, however, unimportant forthe following dis
ussion.



A.3 Properties of the orbits ixThis is always possible, and the fa
torization is unique [95℄. ' 
an easily be determinedvia ' = ar
tan�m12 �m21m11 +m22� : (A.18)' is a 
ontinuous fun
tion of t, and 'jt=0 = 0. To evaluate ' numeri
ally, the stepsizeof the di�erential equation solver has to be small enough so that subsequent ' di�er byless than �. This 
ondition is readily implemented in the adaptive stepsize 
ontrol of thenumeri
al integration. The 
orre
t bran
h '(tn) 
an then be sele
ted at every timestepwith the knowledge of '(tn�1).The integration of the EOM as des
ribed in Se
. A.1.4 
al
ulates e� instead of fM . Sin
ethe lo
al 
oordinate systems are identi
al at t = 0 and t = T0, the winding angles in thelo
al and the stationary system 
an only di�er by integer multiples of 2�. The 
oordinatesystem Eq. (A.4) used above does not introdu
e those spurious windings [25℄. Therefore,e� 
an be dire
tly used to 
al
ulate '.Geometri
ally, ' des
ribes the rotation of fM , and T a shearing. An arbitrary initial de-viation is rotated by ' and sheared a

ording to T . The shearing 
hanges the dire
tionof the ve
tor by an angle � with j�j < �=2. Furthermore, sign[tan(')℄=sign[tan(�)℄. Theeigenvalues of fM are given by m1;2 = exp(�i�). This determines j�j modulo 2�. Com-bined, this information is suÆ
ient to determine � uniquely. The des
ription 
onvenientfor a numeri
al 
al
ulation reads� = 2� � INT �'+ �2� �+ e�sign �mod2�'+ �2� � � 1� ; withe� = ��������ar
tan0BB�r1� �Tr(fM)=2�2Tr(fM)=2 1CCA�������� : (A.19)Here INT[x℄ stands for the largest integer smaller or equal to x, and mod2 for the remainderin a division by 2.The Maslov index is determined from the winding angle. For unstable orbits it is givenby � in units of �� = �=� : (A.20)For stable orbits, � is the nearest odd integer to the winding angle in units of �, i. e.� = 1 + 2 �NINT ��+ �2� � : (A.21)The winding angle s
ales with the repetition number of the orbit. The above formulasshow, however, that the Maslov index only s
ales for unstable orbits with the repetitionnumber. This makes the in
lusion of higher repetitions of a stable orbit more 
ompli
ated.Many authors therefore restri
t themself to the generi
 
ase of 
ompletely 
haoti
 systems,where all orbits are hyperboli
ally unstable. Having �nally determined the Maslov index,all quantities needed for the evaluation of the semi
lassi
al tra
e formula are known.



x Chapter A: Numeri
al evaluation of periodi
 orbitsA.3 Following periodi
 orbits through parameter spa
eIn order to 
al
ulate the semi
lassi
al tra
e formula for di�erent values of the externalparameters (in the 
ase of the 
hannel system these are the magneti
 �eld and the anti-dot diameter), it is desirable to have an algorithm whi
h follows a spe
i�
 orbit throughparameter spa
e. This 
an be a
hieved by iteratively 
hanging marginally the parameter,followed by the 
onvergen
e pro
edure des
ribed in Se
. A.1.4. This approa
h is fre-quently inappli
able, sin
e (espe
ially for very unstable orbits) the largest stepsize whi
hstill assures 
onvergen
e is too small for any pra
ti
al purpose. Extrapolating the initial
onditions 
onditions to the new value of the parameter allows larger stepsizes. Note,however, that it is again ne
essary to ensure that the extrapolation remains on the surfa
eof se
tion and on the energy shell.The 
hoi
e of the extrapolation s
heme is important for the performan
e of this approa
h.Linear interpolation is frequently not good enough, so that polynomial or rational fun
tionextrapolation is re
ommended. As pointed out in Ref. [104℄, extrapolations to too highorders tend to introdu
e spurious os
illations due to numeri
al ina

ura
ies of the data.In this work, rational fun
tion interpolation to 4th order was implemented. The starting
ondition in x and _x was extrapolated to the new external parameter, y was �xed bythe Poin
ar�e surfa
e of se
tion, and _y (the larger velo
ity 
omponent) was determined byenergy 
onservation.To redu
e the 
omputation time further, it is reasonable to introdu
e an adaptive stepsize
ontrol. The number of 
onvergen
e steps needed 
an readily be used as a 
riterion forthe next stepsize. The 
riti
al point is to ensure that, at the new value of the externalparameter, the pro
edure does not 
onverge to a di�erent PO. For systems like the
hannel, where the initial 
onditions for many periodi
 orbits are 
lose in phasespa
e,this requires spe
ial 
are. A 
onvenient and reliable method is to 
he
k whether all orbitquantities vary smoothly. In this work, the following 
hara
teristi
 data of the orbits havebeen extrapolated to the new parameter value: A
tion S, stability Tr(fM ), period T0 andwinding angle �. The latter quantity is espe
ially useful for systems with geometri
allyvery similar orbits. The deviation of the extrapolation of these quantities to the orbit
onverged to was 
ontrolled, and too large deviations were reje
ted. In this 
ase, a newextrapolation with redu
ed stepsize was started. It turned out that it is helpful to adaptthe stepsize not only a

ording to the number of iterations needed, but additionally to theextrapolated 
hanges of the other orbit parameter. This applies espe
ially in the vi
inityof bifur
ations.This pro
edure works its way qui
kly through uninteresting terrain, slowing down wherethe starting 
onditions of the periodi
 orbits vary substantially. The storage requirements
an be redu
ed by saving only those data points, where an interpolation of the neighboringpoints is worse than a tolerated error.Furthermore it is 
onvenient to in
lude routines that 
an handle bifur
ations. At thebifur
ation the orbit is marginally stable, so that the 
onvergen
e algorithm proposedabove fails. This drawba
k 
an be over
ome by �rst approa
hing the bifur
ation pointas 
lose as possible. Then the initial 
onditions are extrapolated suÆ
iently far to theother side of the bifur
ation, trying to 
onverge to the orbit beyond the bifur
ation. Thispro
edure was implemented for period doubling bifur
ations.


