
Appendix ANumerial evaluation of periodiorbitsThis tehnial appendix desribes numerial tehniques to deal with lassial periodiorbits. EÆient methods for �nding those orbits, alulating the relevant propertiesfor the trae formula, and following them through parameter spae are presented.
ContentsA.1 Finding periodi orbits . . . . . . . . . . . . . . . . . . . . . . . . iiA.1.1 Integrating the equations of motion . . . . . . . . . . . . . . . . iiA.1.2 The matrizant . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiA.1.3 Improving the initial ondition . . . . . . . . . . . . . . . . . . . ivA.1.4 Converging to a periodi orbit . . . . . . . . . . . . . . . . . . . vA.2 Properties of the orbits . . . . . . . . . . . . . . . . . . . . . . . . vA.2.1 Period, ation, stability and degeneray . . . . . . . . . . . . . . viA.2.2 Veloity-veloity orrelation funtion . . . . . . . . . . . . . . . . viA.2.3 Maslov index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viiA.3 Following periodi orbits through parameter spae . . . . . . . x
J. Blashke, Ph.D. Thesis Regenesburg, 1999 published under http://www.joahim-blashke.de



ii Chapter A: Numerial evaluation of periodi orbitsA.1 Finding periodi orbitsThe numerial determination of periodi orbits in an arbitrary potential inludes threesteps:1. Integration of the lassial equations of motion (EOM).2. Calulation of the variation of the endpoint for small hanges of the starting point.3. Calulating an improved starting point.Beginning with randomly distributed starting points, these steps are iterate until onver-gene.A.1.1 Integrating the equations of motionThe equations of motion are readily integrated numerially. For a suÆient performaneof this innermost step in the semilassial alulation an eÆient sheme with adaptivestep-size ontrol should be implemented. For smooth potentials, the algorithm presentedby Bulirsh and Stoer [104, 107℄ is aepted to be one of the most powerful methodsavailable.A.1.2 The matrizantCalulating the e�et of a small hange of the starting point by integrating trajetoriesat small, but �nite distanes su�ers from severe numerial limitations. The numerialroundo� gets worse for larger jTr(fM)j and is intolerable already for moderately unstableorbits. Ekhardt and Wintgen [25℄ presented a method whih is better adapted to thelimitations of a numerial approah. It will be outlined in the following.Denoting the phase spae vetor of the referene trajetory with  = (q;p) with theoordinates q and the anonial onjugate momenta p, the EOM an be written as_ = J �H� with J := � 0 I1�I1 0 � : (A.1)Here and in the following, the dots signify derivatives with respet to time. The linearizedtime evolution of the di�erene vetor to the referene orbit Æ is given byÆ(t) = �(t) Æ(0) ; (A.2)with the matrizant �. The time evolution of � an be shown to be_� = L � � with L(t) = J �2H�2 ����(t) ; (A.3)and �(0) = I1. For periodi orbits, the monodromy matrix1 M is de�ned as M = �(T ),where T is the period of the orbit.1To be onsistent with the standard notation in trae formulae, the monodromy matrix is denotedwithout undersore.



A.1 Finding periodi orbits iiiThe matrizant is sympleti, i. e. �yJ � = J , and two eigenvalues of � are equal to 1 (seeEq. (A.5) below). One of these trivial eigenvalues is assoiated with energy onservation,the other with the displaement along the trajetory. The orresponding eigenvetors anbe eliminated analytially. This will be skethed in the following for two dimensionalsystems. From now on,  = (x; y; u; v).Introduing a loal oordinate system by the unitary transformation U(t) aording toÆb = U(t) Æ with U (t) = 0BB� _x � _u=q2 � _y � _v=q2_y � _v=q2 _x _u=q2_u _x=q2 _v � _y=q2_v _y=q2 � _u _x=q2 1CCA ; (A.4)where q = j _j leads to a transformed matrizantÆb(t) = b�(t) Æb(0) with b�(t) = U�1(t)�(t)U (0) = 0BB� 1 � � �0 1 0 00 �0 � e�(t) 1CCA : (A.5)In this oordinate system the two eigenvalues of 1 an be seen expliitly. The time evolutionof the redued matrizant e�(t) is given by_e�(t) = l(t) e�(t) with l = U�1(LU � _U) : (A.6)Denoting the partial derivatives of the Hamiltonian by subsripts, i. e. Hx = �H=�x, thematrix l is expliitly given byl = � l11 l12l21 l22 � ; with (A.7)l11 = �(�Hxx �Hyy +Huu +Hvv)(HxHu +HyHv)+(�H2x +H2y +H2u �H2v )(Hyv +Hxu) + 2(HxHy �HuHv)(Hxv +Hyu)�=q2l12 = �(Hxx +Hvv)(H2y +H2u) + (Hyy +Huu)(H2x +H2v )�2(HxHu +HyHv)(Hxu +Hyv) � 2(HxHy �HuHv)(Hxy �Huv)�=q4l21 = �� (Hxx +Hyy)(H2u +H2v ) � (Huu +Hvv)(H2x +H2y )+2(HxHv +HyHu)(Hxv +Hyu) + 2(HxHu �HyHv)(Hxu �Hyv)�l22 = �l11 :These formulae have been derived by Ekhardt and Wintgen [25℄. They shall now beapplied to a partile in a homogeneous magneti �eld and a veloity-independent externalpotential V . For this situation, it is onvenient to express l in dependene of the real spaeoordinates and their time derivatives. This �nally leads tol11 = �2� w2=2 � Vxx � Vyy� ( _xVx + _yVy) =q2 (A.8)l12 = �1 + (w=2)2� =q2 + �Vxx( _x2 + �2) + Vyy( _y2 + �2) + 2Vxy( _x _y � ��)� =q4l21 = � �Vxx + Vyy + w2=2� � _x2 + _y2�� 2 ��2 + �2�l22 = �l11 :



iv Chapter A: Numerial evaluation of periodi orbitswith w = eB=m?, � = (Vx � _yw=2) and � = (Vy + _xw=2). Starting from the initialondition e�(0) = I1, Eq. (A.6) an be integrated. The most e�etive approah is to solvethe equations of motion for e� and the time evolution of the trajetory simultaneously.This leads to four equations for the phase-spae motion and another four for e�. Withoutredution of the matrizant to two dimensions, a (4 � 4 + 4 =) 20-dimensional di�erentialequation has to be solved. This integration is the innermost loop of the alulation, sothat the analytial redution of the monodromy matrix speeds up the the semilassialapproximation by a fator of about 2.The matrizant gives the linearization of arbitrary deviations from (t). In the followingsetion this information will be used in a numerial sheme to onverge to periodi orbits.A.1.3 Improving the initial onditionTo identify an orbit with a unique starting point, an additional plane in phase spae, thePoinar�e surfae of setion P, has to be de�ned. Starting with a random initial onditionon P, the trajetory and the redued matrizant an be integrated as explained in theprevious setion. Having found another intersetion with P lose to the starting point,the redued matrizant should be used to improve the initial ondition.For a simple notation,  is the phase spae vetor (x; y; u; v) as given above, and the initialand �nal point are denoted by i and f , respetively. The orresponding vetors in theloal oordinate system are given by bi = U�1(0)i and bf = U�1(T )f .2 The seondpart of b = (b1; b2; b3;b4), is denoted by e := (b3; b4). Starting at a distane Æe to theinitial point results, aording to the de�nition of e� in Eq. (A.5), in a deviation �e = e� Æefrom the �nal point. If the new starting point orresponds to a periodi orbit, i. e.ei + Æe != ef +�e) Æe = ( I1 � e�)�1 (ef � ei) : (A.9)All quantities on the r.h.s. of Eq. (A.9) are known expliitly, so that the neessary or-retion Æe = (e3; e4) leading to a periodi an be alulated. Note that by the redutionto 2D no information is lost, sine the two omitted basisvetors have eigenvalues 1. Theorretion Æe an now be transformed bak to the ordinary phase spae oordinates viaÆ = U(0) Æb , where Æb := (0; 0; e3; e4). This step introdues an additional error, sinethe loal oordinate system of neither the initial point U(0), nor of the �nal point U(T )but of the new starting point gives the orret transformation. In pratie, however, thedi�erene is insigni�ant.3 Apart from that small error, Æb is equivalent to the result of aalulation using the full 4D matrizant.Taking  = i + Æ as the new starting point unfortunately1. leaves the Poinar�e surfae of setion.This is assoiated with the fat that the periodi orbit may have another period asthe referene orbit. The initial orretion therefore has to be extrapolated onto thePoinar�e surfae aording to Æb + Æt � _ 2 P :2Please note that for non-losed orbits the loal oordinate system for initial and �nal point are di�erent.3The best approximation feasible at this stage is a linear interpolation between the loal oordinatesystems. This does not improve the onvergene.



A.2 Properties of the orbits v2. violates energy onservation.The matrizant desribes the linearization of deviations from the referene orbit, andthus is only energy onserving to linear order. To prevent a shift of energy, thestarting ondition has to be projeted bak on the energy surfae.4Inluding these two projetion proedures,  = i + Æprojeted gives an improved initialondition.A.1.4 Converging to a periodi orbitIn the linear regime of a periodi orbit, the sheme of the preeding setion onverges ina single step. If the initial ondition is outside the linear regime, the proedure has tobe iterated. Usually a few iteration steps (< 10) are suÆient to determine the initialondition within mahine auray (i. e. � 10�13). In losed systems nearly all startingonditions onverge to a periodi orbit, so that periodi orbits are easily found. For opensystems the trajetories have a �nite probability to leave the system. This leads to aninreased numerial e�ort, sine several starts are needed to onverge to a periodi orbit.For the hannel the probability for a trajetory to leave the entral antidot regime is solarge that only a small fration of initial onditions onverges.To onverge to those unstable �xpoints whose inoming and outgoing manifold interseton the Poinar�e surfae of setion at an extremely small angle, it is sometimes useful toadd only a fration 0 < � < 1 of the alulated orretion to the initial ondition, i. e. = i + �Æprojeted. This enlarges the radius of onvergene for these speial �xpoints,but also inreases the number of iterations required.Starting the above proedure with random points does not assure to �nd all periodiorbits in the system. The most relevant, however, are those with large amplitudes. Thesehave a large radius of onvergene, so that the probability of missing an important orbitis small. It an be further redued by following the orbits through parameter spae.Thereby one an onveniently hek that no orbit is missed at a bifuration. Furthermore,orbits an frequently be lassi�ed. For the hannel system, the number of reetionsin the onstritions together with the symmetry of the orbit gives suh a lassi�ation.Missing orbits an readily be identi�ed in suh a sheme. All this establishes no proof,but ombining these three methods an assure beyond reasonable doubt that the relevantorbits have been inluded.A.2 Properties of the orbitsOne the above algorithm has onverged, the properties of the newly determined periodiorbit have to be alulated. For the appliation of the trae formula the ation S, thedeterminant of the monodromy matrix M , the period T0, the Maslov index � and theveloity-veloity orrelation funtions Cij have to be evaluated. In systems with disretesymmetries, also the symmetry-related degeneraies have to be known.4In pratial appliations it is often unneessary to alulate the normal vetor of the energy surfae.It is generally suÆient to inlude the orretion to the (absolutely) smaller omponent of the momentum(Æu or Æv) diretly, and to determine the seond momentum omponent from energy onservation. Thissimpli�ation has hardly any inuene on the onvergene properties.



vi Chapter A: Numerial evaluation of periodi orbitsA.2.1 Period, ation, stability and degenerayThe period T0 is automatially alulated when integrating the equations of motion. Theation an be integrated straight-forward usingS = Z T00 p dq = Z T00 p _q dt ; (A.10)with p = (x; y) and q = (u; v).The stability of an orbit enters the trae formula via Det(M� I1). The monodromy matrixM is idential to the matrizant after one period, i. e. M = �(T0). The determinant isneither a�eted by the unitary transformation U , nor by the redution to two dimensions,sine the omitted eigenvalues are 1. ThereforeDet(� � 1) = Det(b�� 1) = Det(e� � 1) = 2� Tr(e�) ; (A.11)so that Det(M � I1) an be identi�ed with 2 � Tr(fM). The stability matrix fM is given bythe redued matrizant e� at T = T0. The latter is already known from the onvergeneproedure.The symmetry of an orbit an be determined numerially by alulating the intersetionswith suitable Poinar�e surfaes of setion. These have to be hosen aording to the pos-sible symmetries of the orbits, i. e. the symmetries of the system. Close to a bifuration,however, the asymmetry of an orbit an be in�nitesimal small, and thus overed by thenumerial inauraies. Due to these limitations, the degeneray annot be determinednumerially in the viinity of a bifuration. The degeneray and the Maslov index of anorbit hange only at bifuration points. Following the orbits through parameter spae(see appendix A.3), these quantities an onveniently be alulated suÆiently far from abifuration.The hannel onsidered in this work exhibits three disrete symmetries: with respet toreetion at the x-axis, the y-axis and the ombination of these reetions, i. e. a rotationby �. A onvenient Poinar�e surfae is given by y = 0. The orbits have anyway tobe alulated for varying B and sd in order to ompare with the experimental �ndings.Therefore hoosing B and sd to be far from bifurations does not lead to additionalnumerial e�ort.A.2.2 Veloity-veloity orrelation funtionA nie idea5 to redue the numerial e�ort alulating Cij is to express the veloity of theperiodi orbit as a Fourier sumvi(t) = �vi + 1Xn=1 [ai;n sin(nwt) + bi;n os(nwt)℄ ; (A.12)where w = 2�=T0, T0 is the period of the orbit, and i stands for either x or y. Insertingthis expression in Eq. (5.7), all integrations an be performed analytially. The �nal resultreads Cij = T02 1Xn=1 (ai;n aj;n + bi;n bj;n)=�s � (ai;n bj;n � aj;n bi;n)nw(1=�s)2 + (nw)2 : (A.13)5This idea of U. R�o�ler was ommuniated by R. Onderka.



A.2 Properties of the orbits viiThe oeÆients an and bn an be alulated from the integralsai;n = 2T0 Z T00 vi(t) sin(nwt) dt and (A.14)bi;n = 2T0 Z T00 vi(t) os(nwt) dt :These integrations an again be performed simultaneously with the integration of theEOM.A onvenient method to hek the onvergene of the Fourier sum Eq. (A.12) is given byParseval's theorem. For this speial ase it readsZ T00 jvi(t)j2 = 2T 1Xn=1 �(ai;n)2 + (bi;n)2� : (A.15)In a numerial integration, where Eq. (A.12) has to be trunated, this relation allows anumerial alulation of the trunation error.In the ase of the hannel system, all orbits are similar to ylotron orbits. This leadsto rapidly deaying higher harmonis. Furthermore, the �rst term in Eq. (A.13) an benegleted for those trajetories. This simpli�es the alulation of Cij toCxx � T0�s2 1Xn=1 (ax;n)2 + (bx;n)21 + (nw�s)2 and (A.16)Cxy � T0�s2 1Xn=1 ay;n bx;n + ax;n by;n1 + (nw�s)2 nw�s :For w�s > 1 , the higher Fourier omponents are additionally damped by the fator1=(nw�s). This is ful�lled for the hannel with antidots onsidered in hapter 7. Thereforethe inlusion of the leading 5 Fourier omponents was suÆient.Note that the alulation of N Fourier omponents leads to 4N additional di�erentialequations whih have to be solved simultaneously to the EOM. It is therefore indiated toalulate only  and fM while onverging to a periodi orbit, and to integrate the ompletesystem of di�erential equations (inluding the ation, the stability angle and the Fourieromponents) only one for eah (onverged) orbit.A.2.3 Maslov indexThe Maslov index is a geometrial winding number [22, 66℄. This property will be usedin the following for its numerial evaluation. The proedure presented here is similar tothe one of Ekhardt and Wintgen [25℄, but it is numerially more onvenient. It is muheasier to implement than the general method presented by Creagh and Robbins [22, 66℄.6It is, however, restrited to two dimensional systems.6Their approah is presented in a version aessible to numerial alulations in Ref. [100℄.
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Figure A.1: Loal phase spae portraits around aperiodi orbit. (A) Stable, (B) unstable orbit.
A periodi orbit is a �xpoint of the map-ping of the Poinar�e surfae of setiononto itself. The loal linearization ofthe mapping is given by the redued sta-bility matrix7. Starting with a small de-viation from the periodi orbit  whihorresponds to an eigenvetor of fM , thisdeviation winds around . The totalwinding angle � is related to the Maslovindex. This relation is di�erent for thedi�erent types of �xpoints, i. e. periodi orbits. The loal behavior around the �xpointan easily be lassi�ed in dependene of the eigenvalues m1;m2 of the stability matrix fM :stable orbits $ jm1j = jm2j = 1; Fig. A.1(A).An orbit in the viinity of a stable orbit remains on a ellipse around the �xpoint.All these ellipses map onto themselves. For stable orbits, the trae of the stabilitymatrix is absolutely smaller than 2.hyperbolially unstable orbits $ m1 = 1=m2 > 1; Fig. A.1(B).Two lines in the Poinar�e setion map onto eah other. Starting on one of these,the distane of the intersetion points to the �xpoint exponentially grows (m > 1,outgoing manifold) or shrinks (m < 1, inoming manifold). Hyperbolially unstableorbits have Tr(fM ) > 2.inverse hyperboli orbits $m1 = 1=m2 < �1Equivalent to the hyperboli ase, but the intersetion points hange the side of the�xed point with eah revolution. The trae of fM of these orbits is smaller than -2.For two dimensional unstable orbits the winding angle � is idential for all initial de-viations, and a multiple of � (even multiple for the hyperboli, and odd for the inversehyperboli ase). This is obvious, sine both the inoming manifold and the outgoingmanifold map onto itself. The stability matrix is linear, so that this also holds for alllinear ombinations of these vetors, i. e. the whole surfae of setion.For stable orbits, � is given by the winding angle of an eigenvetor of fM . Now the windingangle is not a multiple of �, and it depends on the initial deviation. The ommon wayto determine the winding angle is therefore to alulate �rst an eigenvetor of fM , andto propagate this along the periodi orbit. This proedure an be simpli�ed, so that asingle integration yields �. This approah uses di�erent informations about �, whih areombined to uniquely de�ne the winding angle.The starting point is to write fM as the produt of a rotation and a positive de�nitesymmetri matrix T :fM = T � os(') sin(')� sin(') os(') � : (A.17)7Stritly speaking, the redued (2D-) stability matrix is a mapping of the plane perpendiular to theorbit (at the initial point) and the energy surfae onto itself. This distintion is, however, unimportant forthe following disussion.



A.3 Properties of the orbits ixThis is always possible, and the fatorization is unique [95℄. ' an easily be determinedvia ' = artan�m12 �m21m11 +m22� : (A.18)' is a ontinuous funtion of t, and 'jt=0 = 0. To evaluate ' numerially, the stepsizeof the di�erential equation solver has to be small enough so that subsequent ' di�er byless than �. This ondition is readily implemented in the adaptive stepsize ontrol of thenumerial integration. The orret branh '(tn) an then be seleted at every timestepwith the knowledge of '(tn�1).The integration of the EOM as desribed in Se. A.1.4 alulates e� instead of fM . Sinethe loal oordinate systems are idential at t = 0 and t = T0, the winding angles in theloal and the stationary system an only di�er by integer multiples of 2�. The oordinatesystem Eq. (A.4) used above does not introdue those spurious windings [25℄. Therefore,e� an be diretly used to alulate '.Geometrially, ' desribes the rotation of fM , and T a shearing. An arbitrary initial de-viation is rotated by ' and sheared aording to T . The shearing hanges the diretionof the vetor by an angle � with j�j < �=2. Furthermore, sign[tan(')℄=sign[tan(�)℄. Theeigenvalues of fM are given by m1;2 = exp(�i�). This determines j�j modulo 2�. Com-bined, this information is suÆient to determine � uniquely. The desription onvenientfor a numerial alulation reads� = 2� � INT �'+ �2� �+ e�sign �mod2�'+ �2� � � 1� ; withe� = ��������artan0BB�r1� �Tr(fM)=2�2Tr(fM)=2 1CCA�������� : (A.19)Here INT[x℄ stands for the largest integer smaller or equal to x, and mod2 for the remainderin a division by 2.The Maslov index is determined from the winding angle. For unstable orbits it is givenby � in units of �� = �=� : (A.20)For stable orbits, � is the nearest odd integer to the winding angle in units of �, i. e.� = 1 + 2 �NINT ��+ �2� � : (A.21)The winding angle sales with the repetition number of the orbit. The above formulasshow, however, that the Maslov index only sales for unstable orbits with the repetitionnumber. This makes the inlusion of higher repetitions of a stable orbit more ompliated.Many authors therefore restrit themself to the generi ase of ompletely haoti systems,where all orbits are hyperbolially unstable. Having �nally determined the Maslov index,all quantities needed for the evaluation of the semilassial trae formula are known.



x Chapter A: Numerial evaluation of periodi orbitsA.3 Following periodi orbits through parameter spaeIn order to alulate the semilassial trae formula for di�erent values of the externalparameters (in the ase of the hannel system these are the magneti �eld and the anti-dot diameter), it is desirable to have an algorithm whih follows a spei� orbit throughparameter spae. This an be ahieved by iteratively hanging marginally the parameter,followed by the onvergene proedure desribed in Se. A.1.4. This approah is fre-quently inappliable, sine (espeially for very unstable orbits) the largest stepsize whihstill assures onvergene is too small for any pratial purpose. Extrapolating the initialonditions onditions to the new value of the parameter allows larger stepsizes. Note,however, that it is again neessary to ensure that the extrapolation remains on the surfaeof setion and on the energy shell.The hoie of the extrapolation sheme is important for the performane of this approah.Linear interpolation is frequently not good enough, so that polynomial or rational funtionextrapolation is reommended. As pointed out in Ref. [104℄, extrapolations to too highorders tend to introdue spurious osillations due to numerial inauraies of the data.In this work, rational funtion interpolation to 4th order was implemented. The startingondition in x and _x was extrapolated to the new external parameter, y was �xed bythe Poinar�e surfae of setion, and _y (the larger veloity omponent) was determined byenergy onservation.To redue the omputation time further, it is reasonable to introdue an adaptive stepsizeontrol. The number of onvergene steps needed an readily be used as a riterion forthe next stepsize. The ritial point is to ensure that, at the new value of the externalparameter, the proedure does not onverge to a di�erent PO. For systems like thehannel, where the initial onditions for many periodi orbits are lose in phasespae,this requires speial are. A onvenient and reliable method is to hek whether all orbitquantities vary smoothly. In this work, the following harateristi data of the orbits havebeen extrapolated to the new parameter value: Ation S, stability Tr(fM ), period T0 andwinding angle �. The latter quantity is espeially useful for systems with geometriallyvery similar orbits. The deviation of the extrapolation of these quantities to the orbitonverged to was ontrolled, and too large deviations were rejeted. In this ase, a newextrapolation with redued stepsize was started. It turned out that it is helpful to adaptthe stepsize not only aording to the number of iterations needed, but additionally to theextrapolated hanges of the other orbit parameter. This applies espeially in the viinityof bifurations.This proedure works its way quikly through uninteresting terrain, slowing down wherethe starting onditions of the periodi orbits vary substantially. The storage requirementsan be redued by saving only those data points, where an interpolation of the neighboringpoints is worse than a tolerated error.Furthermore it is onvenient to inlude routines that an handle bifurations. At thebifuration the orbit is marginally stable, so that the onvergene algorithm proposedabove fails. This drawbak an be overome by �rst approahing the bifuration pointas lose as possible. Then the initial onditions are extrapolated suÆiently far to theother side of the bifuration, trying to onverge to the orbit beyond the bifuration. Thisproedure was implemented for period doubling bifurations.


