Appendix A

Numerical evaluation of periodic
orbits

This technical appendiz describes numerical techniques to deal with classical periodic
orbits. Efficient methods for finding those orbits, calculating the relevant properties

for the trace formula, and following them through parameter space are presented.
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A.1 Finding periodic orbits

The numerical determination of periodic orbits in an arbitrary potential includes three
steps:

1. Integration of the classical equations of motion (EOM).
2. Calculation of the variation of the endpoint for small changes of the starting point.

3. Calculating an improved starting point.

Beginning with randomly distributed starting points, these steps are iterate until conver-
gence.

A.1.1 Integrating the equations of motion

The equations of motion are readily integrated numerically. For a sufficient performance
of this innermost step in the semiclassical calculation an efficient scheme with adaptive
step-size control should be implemented. For smooth potentials, the algorithm presented
by Bulirsch and Stoer [104, 107] is accepted to be one of the most powerful methods
available.

A.1.2 The matrizant

Calculating the effect of a small change of the starting point by integrating trajectories
at small, but finite distances suffers from severe numerical limitations. The numerical
roundoff gets worse for larger |Tr(M)| and is intolerable already for moderately unstable
orbits. Eckhardt and Wintgen [25] presented a method which is better adapted to the

limitations of a numerical approach. It will be outlined in the following.

Denoting the phase space vector of the reference trajectory with v = (g,p) with the
coordinates q and the canonical conjugate momenta p, the EOM can be written as

. OH . 0 1

721—,}, with iz:(—l[())' (A.1)

Here and in the following, the dots signify derivatives with respect to time. The linearized
time evolution of the difference vector to the reference orbit 4=y is given by

ay(t) = x(t) 6v(0), (A.2)
with the matrizant X- The time evolution of X can be shown to be

92H
X = L-x with L(lf,)ziW ,
RARET0!

(A.3)

and x(0) =1 For periodic orbits, the monodromy matrizt M is defined as M = x(T),
where T is the period of the orbit.

!To be consistent with the standard notation in trace formulae, the monodromy matrix is denoted
without underscore.
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The matrizant is symplectic, i.e. XTi x = J, and two eigenvalues of x are equal to 1 (see
Eq. (A.5) below). One of these trivial eigenvalues is associated with energy conservation,
the other with the displacement along the trajectory. The corresponding eigenvectors can
be eliminated analytically. This will be sketched in the following for two dimensional
systems. From now on, v = (z,y,u,v).

Introducing a local coordinate system by the unitary transformation U(t) according to

& —a/q’ =y —'b/qz
5 = Uy wih U = | 1 UL WL (A1)
o gl a0 &/g

where ¢ = |¥| leads to a transformed matrizant

1 % =% %
59(1) = R0 05(0) with (1) = U (O UO) = | | ‘1(()’ (A.5)
0 = x(t

In this coordinate system the two eigenvalues of 1 can be seen explicitly. The time evolution
of the reduced matrizant x(t) is given by

X(t) = 1t)X(t) with [ = U HLU-T). (A.6)

Denoting the partial derivatives of the Hamiltonian by subscripts, i.e. H, = 0H/dx, the
matrix [ is explicitly given by

I = <l” ll?), with (A7)

loy 1o

li = [(-Huw — Hyy+ Hyu + Hyo)(H.H, + H,/H,)

+(—H; + Hy + H, — H})(Hy, + Hy,) + 2(H, H, — H,H,)(H,, + Hy.)] /¢°
Iy = [(Hew + Hyo)(H, + Hy) + (Hyy, + Hy)(H, + Hy)

—2(H, Hy, + HyH,)(Hyy + Hyy) — 2(H  Hy — HyH,) (Hey — Hu)] /q°
Iy = [= (Hea+ Hy)(H, + H;) — (Huu + Hy) (H; + Hy)

+2(H,Hy + HyH,)(Hyo + Hyy) + 2(H, Hy — HyH,)(Hpw — Hyy)|
laa = —l11.

These formulae have been derived by Eckhardt and Wintgen [25]. They shall now be
applied to a particle in a homogeneous magnetic field and a velocity-independent external
potential V. For this situation, it is convenient to express [ in dependence of the real space
coordinates and their time derivatives. This finally leads to

111 = (2 - ’wz/z - Vrr - Vyy) (‘LVT + yVy) /(_[2 (A'S)
ha = (14 (we/2)%) @ + [Vaal@® + B%) + Vi (57 + &%) + 2Viy (i — oB)] /¢*
log = = (Vie + Vi + w2 /2) (i +97) —2 (o + 57)

los = —lq1 .
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with w. = eB/m*, a = (V, — yw./2) and f = (V, + #w./2). Starting from the initial
condition ¥(0) =1, Eq. (A.6) can be integrated. The most effective approach is to solve
the equations of motion for ¥ and the time evolution of the trajectory simultaneously.
This leads to four equations for the phase-space motion and another four for y. Without
reduction of the matrizant to two dimensions, a (4 x 4 + 4 =) 20-dimensional differential
equation has to be solved. This integration is the innermost loop of the calculation, so
that the analytical reduction of the monodromy matrix speeds up the the semiclassical
approximation by a factor of about 2.

The matrizant gives the linearization of arbitrary deviations from ~(¢). In the following
section this information will be used in a numerical scheme to converge to periodic orbits.

A.1.3 Improving the initial condition

To identify an orbit with a unique starting point, an additional plane in phase space, the
Poincaré surface of section P, has to be defined. Starting with a random initial condition
on P, the trajectory and the reduced matrizant can be integrated as explained in the
previous section. Having found another intersection with P close to the starting point,
the reduced matrizant should be used to improve the initial condition.

For a simple notation, 4 is the phase space vector (z,y, u,v) as given above, and the initial
and final point are denoted by ; and ~, respectively. The corresponding vectors in the
local coordinate system are given by 4; = U™1(0) v, and i = U—(T) ‘yf.2 The second
part of ¥ = (31.72,73,74), is denoted by v := (73,74). Starting at a distance ¢ to the
initial point results, according to the definition of ¥ in Eq. (A.5), in a deviation Ay = Y v
from the final point. If the new starting point cor_responds to a periodic orbit, i. e. B

~ ~ ! ~ ~
Yi+0y = 5+ Ay
= 7 = M- (G -7) - (A.9)

All quantities on the r.h.s. of Eq. (A.9) are known explicitly, so that the necessary cor-
rection 0 = (73, 74) leading to a periodic can be calculated. Note that by the reduction
to 2D no information is lost, since the two omitted basisvectors have eigenvalues 1. The
correction 64 can now be transformed back to the ordinary phase space coordinates via
dv = U(0) 45, where 65 := (0,0,73,74). This step introduces an additional error, since
the local coordinate system of neither the initial point U(0), nor of the final point U(T)
but of the new starting point gives the correct transformation. In practice, however, the
difference is insignificant.® Apart from that small error, 67 is equivalent to the result of a
calculation using the full 4D matrizant.

Taking v = =, + 07y as the new starting point unfortunately

1. leaves the Poincaré surface of section.
This is associated with the fact that the periodic orbit may have another period as
the reference orbit. The initial correction therefore has to be extrapolated onto the
Poincaré surface according to 6 + dt -4 € P .

2 . . e - . .
Please note that for non-closed orbits the local coordinate system for initial and final point are different.
3The best approximation feasible at this stage is a linear interpolation between the local coordinate
systems. This does not improve the convergence.
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2. violates energy conservation.
The matrizant describes the linearization of deviations from the reference orbit, and
thus is only energy conserving to linear order. To prevent a shift of energy, the

starting condition has to be projected back on the energy surface.*

Including these two projection procedures, ¥ = ¥; + 09 prpjected giVes an improved initial
condition.

A.1.4 Converging to a periodic orbit

In the linear regime of a periodic orbit, the scheme of the preceding section converges in
a single step. If the initial condition is outside the linear regime, the procedure has to
be iterated. Usually a few iteration steps (< 10) are sufficient to determine the initial
condition within machine accuracy (i.e. & 107). In closed systems nearly all starting
conditions converge to a periodic orbit, so that periodic orbits are easily found. For open
systems the trajectories have a finite probability to leave the system. This leads to an
increased numerical effort, since several starts are needed to converge to a periodic orbit.
For the channel the probability for a trajectory to leave the central antidot regime is so
large that only a small fraction of initial conditions converges.

To converge to those unstable fixpoints whose incoming and outgoing manifold intersect
on the Poincaré surface of section at an extremely small angle, it is sometimes useful to
add only a fraction 0 < k < 1 of the calculated correction to the initial condition, i.e.
Y = Vi + K0 projected- Lhis enlarges the radius of convergence for these special fixpoints,
but also increases the number of iterations required.

Starting the above procedure with random points does not assure to find all periodic
orbits in the system. The most relevant, however, are those with large amplitudes. These
have a large radius of convergence, so that the probability of missing an important orbit
is small. It can be further reduced by following the orbits through parameter space.
Thereby one can conveniently check that no orbit is missed at a bifurcation. Furthermore,
orbits can frequently be classified. For the channel system, the number of reflections
in the constrictions together with the symmetry of the orbit gives such a classification.
Missing orbits can readily be identified in such a scheme. All this establishes no proof,
but combining these three methods can assure beyond reasonable doubt that the relevant
orbits have been included.

A.2 Properties of the orbits

Once the above algorithm has converged, the properties of the newly determined periodic
orbit have to be calculated. For the application of the trace formula the action S, the
determinant of the monodromy matrix M, the period Ty, the Maslov index p and the
velocity-velocity correlation functions C;; have to be evaluated. In systems with discrete
symmetries, also the symmetry-related degeneracies have to be known.

*In practical applications it is often unnecessary to calculate the normal vector of the energy surface.
It is generally sufficient to include the correction to the (absolutely) smaller component of the momentum
(0u or dv) directly, and to determine the second momentum component from energy conservation. This
simplification has hardly any influence on the convergence properties.
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A.2.1 Period, action, stability and degeneracy

The period Ty is automatically calculated when integrating the equations of motion. The
action can be integrated straight-forward using

To «To
0 0

with p = (z,y) and ¢ = (u,v).

The stability of an orbit enters the trace formula via Det(M —1). The monodromy matrix
M is identical to the matrizant after one period, i.e. M = x(Ty). The determinant is
neither affected by the unitary transformation U, nor by the reduction to two dimensions,
since the omitted eigenvalues are 1. Therefore

Det(x —1) = Det(x —1) = Det(x —1) = 2 - Tr(x) , (A.11)

so that Det(M —1) can be identified with 2 — Tr(M). The stability matrix M is given by
the reduced matrizant y at T = Tp. The latter is already known from the convergence
procedure.

The symmetry of an orbit can be determined numerically by calculating the intersections
with suitable Poincaré surfaces of section. These have to be chosen according to the pos-
sible symmetries of the orbits, i.e. the symmetries of the system. Close to a bifurcation,
however, the asymmetry of an orbit can be infinitesimal small, and thus covered by the
numerical inaccuracies. Due to these limitations, the degeneracy cannot be determined
numerically in the vicinity of a bifurcation. The degeneracy and the Maslov index of an
orbit change only at bifurcation points. Following the orbits through parameter space
(see appendix A.3), these quantities can conveniently be calculated sufficiently far from a
bifurcation.

The channel considered in this work exhibits three discrete symmetries: with respect to
reflection at the z-axis, the y-axis and the combination of these reflections, i.e. a rotation
by m. A convenient Poincaré surface is given by y = 0. The orbits have anyway to
be calculated for varying B and s; in order to compare with the experimental findings.
Therefore choosing B and s; to be far from bifurcations does not lead to additional
numerical effort.

A.2.2 Velocity-velocity correlation function

A nice idea® to reduce the numerical effort calculating C;; is to express the velocity of the
periodic orbit as a Fourier sum

vi(t) =v; + Z [ai, sin(nwt) 4+ b;, cos(nwt)] , (A.12)

n=1

where w = 27 /Ty, Ty is the period of the orbit, and 7 stands for either z or y. Inserting
this expression in Eq. (5.7), all integrations can be performed analytically. The final result
reads

Cii = & i (”‘i,n Ajn + bi,n bj,rl,)/Ts - ((I/i,n b_;.n —Qjn bi,n)nw (A 13)
o2 (170 + (nw)? | |

>This idea of U. Ré8ler was communicated by R. Onderka.
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The coefficients a,, and b, can be calculated from the integrals

2 [To
iy = = v;(t) sin(nwt) dt  and (A.14)
2 [To
b;, = — v; (t) cos(nwt) dt .
’ T(]

These integrations can again be performed simultaneously with the integration of the

EOM.

A convenient method to check the convergence of the Fourier sum Eq. (A.12) is given by
Parseval’s theorem. For this special case it reads

In a numerical integration, where Eq. (A.12) has to be truncated, this relation allows a

25 [l + (05,7] (15

numerical calculation of the truncation error.

In the case of the channel system, all orbits are similar to cyclotron orbits. This leads
to rapidly decaying higher harmonics. Furthermore, the first term in Eq. (A.13) can be
neglected for those trajectories. This simplifies the calculation of C;; to

ToTs ~— (byn)?
Cow = 0T Z a;: anr);) and (A.16)
— S
0
Coy = TOTD Z yin Van & Gain by nwT, .

1+ (nwry)?

For wr; > 1 , the higher Fourier components are additionally damped by the factor
1/(nwTy). This is fulfilled for the channel with antidots considered in chapter 7. Therefore
the inclusion of the leading 5 Fourier components was sufficient.

Note that the calculation of N Fourier components leads to 4N additional differential
equations which have to be solved simultaneously to the EOM. It is therefore indicated to
calculate only v and M while converging to a periodic orbit, and to integrate the complete
system of differential equations (including the action, the stability angle and the Fourier
components) only once for each (converged) orbit.

A.2.3 Maslov index

The Maslov index is a geometrical winding number [22, 66]. This property will be used
in the following for its numerical evaluation. The procedure presented here is similar to
the one of Eckhardt and Wintgen [25], but it is numerically more convenient. It is much
easier to implement than the general method presented by Creagh and Robbins [22, 66].5
It is, however, restricted to two dimensional systems.

STheir approach is presented in a version accessible to numerical calculations in Ref. [100].



VIII CHAPTER A: NUMERICAL EVALUATION OF PERIODIC ORBITS

(A) (B) A periodic orbit is a fixpoint of the map-
J k ping of the Poincaré surface of section
1 onto itself. The local linearization of

- .

the mapping is given by the reduced sta-
bility matrix”. Starting with a small de-

s\\ v viation from the periodic orbit v which
ﬁ r corresponds to an eigenvector of M, this

deviation winds around <. The total
Figure A.1:  Local phase space portraits around a winding angle © is related to the Maslov

periodic orbit. (A) Stable, (B) unstable orbit. index. This relation is different for the
different types of fixpoints, i.e. periodic orbits. The local behavior around the fixpoint

can easily be classified in dependence of the eigenvalues mi,mso of the stability matrix M:

stable orbits « |mi| = |m2| = 1; Fig. A.1(A).
An orbit in the vicinity of a stable orbit remains on a ellipse around the fixpoint.
All these ellipses map onto themselves. For stable orbits, the trace of the stability
matrix is absolutely smaller than 2.

hyperbolically unstable orbits < mj = 1/ms > 1; Fig. A.1(B).
Two lines in the Poincaré section map onto each other. Starting on one of these,
the distance of the intersection points to the fixpoint exponentially grows (m > 1,
outgoing manifold) or shrinks (m < 1, incoming manifold). Hyperbolically unstable

orbits have Tr(M) > 2.

inverse hyperbolic orbits < m; = 1/m2 < -1
Equivalent to the hyperbolic case, but the intersection points change the side of the
fixed point with each revolution. The trace of M of these orbits is smaller than -2.

For two dimensional unstable orbits the winding angle © is identical for all initial de-
viations, and a multiple of 7 (even multiple for the hyperbolic, and odd for the inverse
hyperbolic case). This is obvious, since both the incoming manifold and the outgoing
manifold map onto itself. The stability matrix is linear, so that this also holds for all
linear combinations of these vectors, i.e. the whole surface of section.

For stable orbits, O is given by the winding angle of an eigenvector of M. Now the winding
angle is not a multiple of 7, and it depends on the initial deviation. The common way
to determine the winding angle is therefore to calculate first an eigenvector of M, and
to propagate this along the periodic orbit. This procedure can be simplified, so that a
single integration yields ©. This approach uses different informations about ©, which are
combined to uniquely define the winding angle.

The starting point is to write M as the product of a rotation and a positive definite
symmetric matrix T

~ cos(p) sin(p)
M = Z( —sin(p) cos(p) > ' (A-17)

"Strictly speaking, the reduced (2D-) stability matrix is a mapping of the plane perpendicular to the
orbit (at the initial point) and the energy surface onto itself. This distinction is, however, unimportant for
the following discussion.
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This is always possible, and the factorization is unique [95]. ¢ can easily be determined
via
Tz = Tt mzl) (A.18)

@ = arctan
mi1 + mao

¢ is a continuous function of ¢, and ¢|i=¢ = 0. To evaluate ¢ numerically, the stepsize
of the differential equation solver has to be small enough so that subsequent ¢ differ by
less than 7. This condition is readily implemented in the adaptive stepsize control of the
numerical integration. The correct branch ¢(t,) can then be selected at every timestep
with the knowledge of ¢(t,,_1).

The integration of the EOM as described in Sec. A.1.4 calculates y instead of M. Since
the local coordinate systems are identical at ¢ = 0 and t = Ty, the_winding angles in the
local and the stationary system can only differ by integer multiples of 27. The coordinate
system Eq. (A.4) used above does not introduce those spurious windings [25]. Therefore,
X can be directly used to calculate .

Geometrically, ¢ describes the rotation of M , and T a shearing. An arbitrary initial de-
viation is rotated by ¢ and sheared according to T. The shearing changes the direction
of the vector by an angle « with || < /2. Furthermore, sign[tan(y)]=sign[tan(®)]. The
cigenvalues of M are given by mi = exp(£i©). This determines |®| modulo 27. Com-
bined, this information is sufficient to determine © uniquely. The description convenient
for a numerical calculation reads

27 - INT [szi] + ésign [modg ((P; 7T> — 1] , with
™

—~ 2 '
R \/ 1 (Tr(M) /2)
© = |arctan — . (A.19)
Tr(M)/2 ‘

C)

Here INT[z] stands for the largest integer smaller or equal to 2, and mods for the remainder
in a division by 2.

The Maslov index is determined from the winding angle. For unstable orbits it is given
by © in units of 7

p=0/r. (A.20)

For stable orbits, i is the nearest odd integer to the winding angle in units of 7, i.e.

)
,u:l-i—Z-NINT[ ; ”] . (A.21)

7T

The winding angle scales with the repetition number of the orbit. The above formulas
show, however, that the Maslov index only scales for unstable orbits with the repetition
number. This makes the inclusion of higher repetitions of a stable orbit more complicated.
Many authors therefore restrict themself to the generic case of completely chaotic systems,
where all orbits are hyperbolically unstable. Having finally determined the Maslov index,
all quantities needed for the evaluation of the semiclassical trace formula are known.
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A.3 Following periodic orbits through parameter space

In order to calculate the semiclassical trace formula for different values of the external
parameters (in the case of the channel system these are the magnetic field and the anti-
dot diameter), it is desirable to have an algorithm which follows a specific orbit through
parameter space. This can be achieved by iteratively changing marginally the parameter,
followed by the convergence procedure described in Sec. A.1.4. This approach is fre-
quently inapplicable, since (especially for very unstable orbits) the largest stepsize which
still assures convergence is too small for any practical purpose. Extrapolating the initial
conditions conditions to the new value of the parameter allows larger stepsizes. Note,
however, that it is again necessary to ensure that the extrapolation remains on the surface
of section and on the energy shell.

The choice of the extrapolation scheme is important for the performance of this approach.
Linear interpolation is frequently not good enough, so that polynomial or rational function
extrapolation is recommended. As pointed out in Ref. [104], extrapolations to too high
orders tend to introduce spurious oscillations due to numerical inaccuracies of the data.
In this work, rational function interpolation to 4th order was implemented. The starting
condition in z and # was extrapolated to the new external parameter, y was fixed by
the Poincaré surface of section, and ¢ (the larger velocity component) was determined by
energy conservation.

To reduce the computation time further, it is reasonable to introduce an adaptive stepsize
control. The number of convergence steps needed can readily be used as a criterion for
the next stepsize. The critical point is to ensure that, at the new value of the external
parameter, the procedure does not converge to a different PO. For systems like the
channel, where the initial conditions for many periodic orbits are close in phasespace,
this requires special care. A convenient and reliable method is to check whether all orbit
quantities vary smoothly. In this work, the following characteristic data of the orbits have
been extrapolated to the new parameter value: Action S, stability Tr(M ), period Ty and
winding angle ©. The latter quantity is especially useful for systems with geometrically
very similar orbits. The deviation of the extrapolation of these quantities to the orbit
converged to was controlled, and too large deviations were rejected. In this case, a new
extrapolation with reduced stepsize was started. It turned out that it is helpful to adapt
the stepsize not only according to the number of iterations needed, but additionally to the
extrapolated changes of the other orbit parameter. This applies especially in the vicinity
of bifurcations.

This procedure works its way quickly through uninteresting terrain, slowing down where
the starting conditions of the periodic orbits vary substantially. The storage requirements
can be reduced by saving only those data points, where an interpolation of the neighboring
points is worse than a tolerated error.

Furthermore it is convenient to include routines that can handle bifurcations. At the
bifurcation the orbit is marginally stable, so that the convergence algorithm proposed
above fails. This drawback can be overcome by first approaching the bifurcation point
as close as possible. Then the initial conditions are extrapolated sufficiently far to the
other side of the bifurcation, trying to converge to the orbit beyond the bifurcation. This
procedure was implemented for period doubling bifurcations.



