
Chapter 6Magneto
ondu
tan
e of the free2DEGThe experimental realization of a free two dimensional ele
tron gas (2DEG) is out-lined. The Shubnikov-de-Haas os
illations (SdH) in its longitudinal resistivity arereprodu
ed by the semi
lassi
al Kubo formula, but the plateaus in the Hall resistivity,i. e. the integer quantum Hall e�e
t (QHE), are not. The des
ription of the QHEsu

eeds by in
luding a spe
i�
 higher-order �h term originating from the level density.The 
orresponding 
orre
tion is derived for general systems.
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60 Chapter 6: Magneto
ondu
tan
e of the free 2DEGThe free two dimensional ele
tron gas (2DEG) is predisposed as a test system for thesemi
lassi
al Kubo formula Eq. (5.4). The longitudinal 
ondu
tivity in the presen
e of atransverse magneti
 �eld B was already evaluated by the authors of the semi
lassi
al Kuboformula [63, 41℄. In the following se
tions, both the longitudinal and the Hall 
ondu
tivityfor the free 2DEG are derived. The resulting des
ription is also valid for parti
les withspin. For those, ns denotes the ele
tron density per spin orientation, i. e. ns = 2(S+1=2)ne.For spin-less parti
les, ns is given by the total ele
tron sheet density ne.6.1 Two dimensional ele
tron gasThe ele
troni
 bands of semi
ondu
tors bend at interfa
es. In a suitable designed hetero-stru
ture (e. g. GaAs/GaAlAs), this leads to a narrow, triangular region at the interfa
ewhere the 
ondu
tion band is below the Fermi energy. EF 
an be 
hosen so that only thelowest eigenstate of this well is o

upied. For suÆ
iently low thermal energies higher statesare energeti
ally una

essible, so that the 
orresponding degree of freedom is blo
ked.From a quantum me
hani
al point of view, su
h a system is truly two-dimensional. Fig. 6.1illustrates this situation.
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Figure 6.1: Upper part: The me
hanism leading to a 2DEG at the interfa
e. Lowerpart: An undoped spa
er layer between GaAs and n-GaAlAs redu
es impurity s
atter-ing at the donors. The 2DEG 
an additionally be laterally 
on�ned by ele
trostati
gates (left), shallow et
hing (middle) or deep et
hing (right).Implementing the donors at a distan
e from the interfa
e extremely redu
es the impuritys
attering. At low temperatures, where ele
tron-phonon s
attering 
an be negle
ted, thisis nevertheless the dominant s
attering me
hanism. This 
omes about as semi
ondu
tors
an nowadays be produ
ed with extremely low 
ontaminations and latti
e defe
ts. Thelatter is fa
ilitated by the nearly identi
al latti
e 
onstants of GaAs and GaAlAs. Forthese reasons, the mobility of those devi
es 
an be extremely high. The mean-free pathin state-of-the-art samples ex
eeds 10�m.An additional lateral 
on�nement of the 2DEG is possible either by et
hing or by applyingele
trostati
 gates. By ele
tron beam lithography stru
tures in the 10nm regime 
an bede�ned. This is 
omparable to the Fermi wavelength, whi
h is typi
ally of the order ofsome 10nm.



6.3 The 
lassi
al 
ondu
tivity 616.2 The 
lassi
al 
ondu
tivityIn the 
lassi
al pi
ture, an external ele
tri
 �eld a

elerates the ele
trons. Due to impurity
ollisions, they a
quire an average drift velo
ity ~vd = ��~E. The mobility � is related tothe s
attering time �s via � = e�s=m?, and the mean-free path is given by ` = vF �s. The
lassi
al magneto
ondu
tivity 
an be derived using the Einstein relatione� = e2 g(EF )D ; (6.1)where g denotes the level density and D the di�usion tensor. D 
an be evaluated withinlinear response, leading to [103℄Dij = Z 10 dt hvi(t) vj(0)i ; (6.2)where the bra
kets denote an average over the Fermi surfa
e. This �nally leads to theDrude 
ondu
tivity tensor (for a detailed derivation see e. g. Ref. [99℄)e� = �01 + (!
�s)2 � 1 �!
�s!
�s 1 � ; �0 = nse2�sm? = nse� : (6.3)The symmetry of the system enfor
es e�xx = e�yy and e�xy = �e�yx. Using Eq. (5.10), theresistivity tensor e� is given bye� = �0 � 1 !
�s�!
�s 1 � ; �0 = 1�0 = m?nse2�s : (6.4)The 
lassi
al longitudinal resistivity e�xx = �0 = m?=(nee2�s) is independent of the mag-neti
 �eld. Experimentally, the 
lassi
al limit is re
overed in the low-�eld regime. There-fore the measurement of e�xxjB=0 is a 
onvenient way to determine the mobility � (andthus the s
attering time �s). The Hall resistivity e�xy = B=(ens) is proportional to themagneti
 �eld, whi
h is 
onsistent with the usual de�nition of the Hall resistan
e.In analogy to the smooth part of the level density eg 
onsidered above, the 
lassi
al (smooth)part of the 
ondu
tivity (resistivity) of the free 2DEG a

ording to Eq. (6.3) (Eq. (6.4))is denoted with a tilde.6.3 Leading order in �hThe tra
e formula for the os
illating part of the 
ondu
tivity given in Se
. 5.5 is, just asthe Gutzwiller tra
e formula, only valid for isolated periodi
 orbits. An extension to the
ase of the free 2DEG with its two-dimensional translational symmetry is possible usingan approa
h analog to Creagh and Littlejohn's treatment of the level density for systemswith 
ontinuous symmetries (see Se
. 2.3, espe
ially Eq. (2.15)). Alternatively one 
anpro
eed as for the 
al
ulation of the level density asso
iated with the 
y
lotron orbits(
f. Se
. 4.2.1.3). Both approa
hes redu
e the problem to a one dimensional harmoni
os
illator with an additional fa
tor� = V � eB2��h (6.5)



62 Chapter 6: Magneto
ondu
tan
e of the free 2DEGfrom integration over the symmetry. The 
y
lotron orbit is the only primitive periodi
orbit of the system, so that the sum over all orbits in the tra
e formula redu
es to thesum over its repetitions. The velo
ity-velo
ity 
orrelation of the primitive periodi
 orbita

ording to Eq. (5.7) 
an be 
al
ulated analyti
ally, resulting inCxx = R2
� !
�s1 + (!
�s)2 and Cxy = R2
� (!
�s)21 + (!
�s)2 ; (6.6)with the 
y
lotron frequen
y w
 = eB=m? and the 
y
lotron radius R
 = �h=eB � p4�ns.Inserting all this into Eq. (5.4) and denoting the period of the primitive orbit with T0 =2�=!
 results inÆ�xx = 2 �01 + (!
�s)2 1Xp=1R(pT0)e�p2T0=2�s 
os �2�p� eE � 12��Æ�xy = �2 1!
�s �01 + (!
�s)2 1Xp=1R(pT0)e�p2T0=2�s 
os �2�p� eE � 12�� : (6.7)The relation between �xx and �xy is remarkable: Both the 
lassi
al 
ontributions a

ordingto Eq. (6.3) and the os
illating parts of Eq. (6.7) are proportional to ea
h other, but withinverse fa
tors:e�xy = �!
�s � e�xx ; and Æ�xy = �1=(!
�s) � Æ�xx : (6.8)In the strong �eld limit the 
lassi
al Hall 
ondu
tivity thus dominates over the longitudinal
ondu
tivity (e�xy � e�xx), and the quantum os
illations in �xy are suppressed 
omparedto the os
illations in �xx (Æ�xy � Æ�xx).On Landau levels, the normalized energy eE in Eq. (6.7) is identi
al to the Landau quantumnumber. For spin-less parti
les it is therefore given by eE = EF=(�h!
) = 2��hns=(eB).In
luding spin leads toeE = EF�h!
 + sg?12m?me ; (6.9)with the spin quantum number s and the Land�e g-fa
tor g? of the material. For the2DEG in GaAs, s = �1=2 and g?m?=me � �0:0293. This 
orresponds to a spin splittingof � 1:5% of the Landau level separation, whi
h usually 
annot be dete
ted. For InAs, in
ontrast, g?m?=me � 0:338, leading to a separation of the two spin peaks of � 17% of theLandau level distan
e. This explains why in GaAs/GaAlAs heterostru
tures the spin isgenerally negle
ted. In
luding spin, the 
ontributions of the spin-subsystems to Æ� haveto be added. As obvious from Eq. (6.9), the in
lusion of spin only leads to a shift of theLandau levels. Sin
e within this approa
h no additional spin-related e�e
ts are in
luded,the dis
ussion of Eq. (6.7) 
an be restri
ted to spin-less parti
les without loss of generality.The total resistivity � = ��1 is found by adding the 
lassi
al part a

ording to Eq. (6.4)and the semi
lassi
al approximation of the quantum os
illations of Eq. (6.7), i. e.� = e� + Æ� : (6.10)



6.3 Leading order in �h 63For the longitudinal 
ondu
tivity �xx, the quantum me
hani
al self-
onsistent Born ap-proximation for short-range s
atters [9, 87℄ in the low-�eld regime !
�s < 1 is equivalentto this semi
lassi
al result.In Fig. 6.2 the result of Eq. (6.7) for �xx and �xy is shown for a system with ele
trondensity ns = 1:0 � 1016m�2 and mobility � = 100m2V�1s�1 at a temperature of 10K.The 
lassi
al resistivity (solid) is 
ompared to the semi
lassi
al des
ription (dashed). Thequantum os
illations to �xx are seen to be an important 
orre
tion in large �elds. Theygive rise to the Shubnikov-de-Haas (SdH) os
illations.
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Figure 6.2: The diagonal and the Hall resistivity of the free 2DEG. Solid: 
lassi
alresult of Eq. (6.4); dashed: semi
lassi
al results a

ording to Eqs. (6.10, 6.7, 6.4). TheSdH os
illations in the longitudinal resistivity are well reprodu
ed, but the QHE is notre
overed in the semi
lassi
al approximation. Insets show the in
uen
e of mobility(left) and temperature (right) on �xx. Dashed: results of the 
entral graphi
 (� =100m2V�1s�1, T = 10K); solid: � = 50m2V�1s�1 (left inset), T = 3K (right inset).The dependen
e on the s
atterer density is illustrated in the left inset. The dashed linerepeats the result of the main graphi
 with � = 100m2V�1s�1, whereas the solid line
orresponds to � = 50m2V�1s�1. The zero �eld resistan
e is, as expe
ted from Eq. (6.4),inverse proportional to the mobility. The amplitude of the SdH os
illations in
reaseswith lower mobility, and their relative width remains essentially un
hanged. This is not
onsistent with the general a

epted pi
ture of the SdH os
illations. An in
reased s
attererdensity extends the region of lo
alized states between the Landau levels, pushing themobility edges 
loser to the Landau levels. This leads to sharper peaks in �xx. Thelo
alization of states is semi
lassi
ally due to periodi
 orbits whi
h in
lude s
atteringevents. As pointed out in Se
. 5.2, those have been negle
ted in the derivation of thesemi
lassi
al Kubo formula. Therefore the semi
lassi
al approximation for the di�usivelimit 
an not be expe
ted to des
ribe the SdH line widths 
orre
tly.The right inset shows the in
uen
e of temperature. The dashed line repeats the result ofthe 
entral graphi
 for T = 10K, whereas the solid line 
orresponds to T = 3K. The SdHos
illations get sharper for lower temperatures. High temperatures lead, as expe
ted, to



64 Chapter 6: Magneto
ondu
tan
e of the free 2DEGthe 
lassi
al limit �xx = �0. This is the 
orre
t temperature dependen
e.In 
on
lusion, the longitudinal resistivity of the 2DEG is well approximated by the semi-
lassi
al Kubo formula. It only fails to reprodu
e the 
orre
t dependen
e of the peakwidths on the mobility. This is due to the negle
t of periodi
 orbits in
luding s
attering.In 
ontrast to the su

essful des
ription of �xx, the semi
lassi
al approximation of theHall resistivity is inadequate. The semi
lassi
al 
orre
tion to the o�-diagonal resistivityEq. (6.7) plotted in Fig. 6.2 is 
ompletely negligible. It does not reprodu
e the integerquantum Hall e�e
t (QHE).6.4 �h 
orre
tion from the level densityThe failure of the semi
lassi
al des
ription for �xy might be due to the restri
tion to leadingorder in �h. Higher-order 
orre
tions 
an be implemented by going ba
k to the quantumme
hani
al formula for the linear transport properties proposed by Str�eda [75℄:V � �xx = �e2�hTr[vxÆ(E �H)vxÆ(E �H)℄ (6.11)V � �xy = e �N(E;B)�B + i2e2�hTr[vxG+(E)vyÆ(E �H) � vxÆ(E �H)vyG�(E)℄ :Here G� denotes the advan
ed and retarded Green's fun
tion, respe
tively. The se
ondterm of �xy is analog to the expression for �xx. This well approximated by the semi
lassi
alKubo formula, indi
ating that higher-order 
orre
tions to this term are irrelevant.In the following, a higher-order 
orre
tion to �N=�B shall be derived. It should not berestri
ted to the free 2DEG, so that the general form of a semi
lassi
al level density is
hosen as starting point:Æg(E) = 1�h(k+2)=2 Xpo Apo Tppo 
os�Spo�h � �po�2� ; (6.12)The damping terms due to temperature and impurities as well as other prefa
tors are in-
luded in the amplitudes Apo for notational 
onvenien
e. The volume term of the Thomas-Fermi level density, whi
h gives the leading 
ontribution to the smooth part of g(E), isindependent of the magneti
 �eld. Therefore only the os
illating part of the level density
ontributes to �N=�B. UsingÆN(E;B) = Z EF0 Æg(E;B) dE ; (6.13)the semi
lassi
al approximation for the �rst term in Eq. (6.11) 
an be expressed asÆ�Ixy := e �N(E;B)�B = e �[ÆN(E;B)℄�B (6.14)� � e�h(k+2)=2 Xpo 1p ��B Z EF0 Apo(E;B)�Spo�E 
os�Spo(E;B)�h � �po�2� dE= � e�h(k+2)=2 Xpo 1p ��B Z S(EF ;B)S(0;B) Apo(S;B) 
os�Spo(S;B)�h � �po�2� dS :



6.4 �h 
orre
tion from the level density 65In the se
ond line it was used that the period of an orbit is given by Tpo = p � Tppo =p ��Sppo=�E, where p denotes the winding number. The last step assumed that the a
tionS(E;B) is invertible1 , so that E(S;B) is uniquely de�ned for all S and B. The integralover S 
an be performed by subsequent partial integration. The partial derivative withrespe
t to B a
ts both on the semi
lassi
al amplitude of the orbit and on the a
tion.2Taking these derivatives and sorting the terms in powers of �h �nally leads toÆ�Ixy � �e�h(k+2)=2 Xpo 1p"Apo�Spo�B 
os�Spo�h � �po�2�#E=EFE=0 + Æ��hxy ; (6.15)Æ��hxy = �e�h(k+2)=2 Xpo 1p" 1Xi=1 �hi 
os�Spo�h � �po�2 + i�2����� didSiApo(S;B)� �Spo�B � ��B � di�1dSi�1Apo(S;B)��#E=EFE=0 :The leading order in �h is given by the �rst term of Æ�Ixy in Eq. (6.15). If the 
ontribu-tion of the lower integration limit vanishes, this reprodu
es the term 1=e �S=�B of thesemi
lassi
al Kubo formula Eq. (5.4). Æ��hxy gives a series of �h-
orre
tions.The starting point of this derivation is given by the semi
lassi
al level density, whi
h byitself is only valid in leading order in �h. Higher-order 
orre
tions to Æg entail additionalterms to Eq. (6.15). If the semi
lassi
al approximation of the level density of the systemis good, Æ��hxy as given in Eq. (6.15) 
ontains the dominant 
orre
tions.For the free 2DEG this 
ondition is ful�lled, sin
e the semi
lassi
al approximation of itslevel density is exa
t (
f. Se
. 4.2.1.3). For this system all �h 
orre
tions to Æ�Ixy are in
ludedin Eq. (6.15).3 The relevan
e of the �h 
orre
tions in Eq. (6.15) for the 
ondu
tivity tensorof the free 2DEG shall now be dis
ussed.By writing the prefa
tors of the level density Eq. (4.11) as a produ
t of dS=dE andan amplitude, Eq. (6.15) 
an be applied to the free 2DEG.4 In
luding expli
itly �nitetemperature and impurities by appropriate damping terms, the result readsÆ�Ixy = 2ensB 1Xp=1 R(pT0)e�p2T0=2�s 
os �2�p� eE � 12��+ Æ��hxy ;Æ��hxy = � e2h� 1Xp=1 1pR(pT0)e�p2T0=2�s sin �2�p� eE � 12�� : (6.16)The period of the primitive 
y
lotron orbit is given by T0 = 2�m=(eB). The �rst termof Æ�Ixy is the leading-order 
ontribution in �h5. It is already in
luded in the tra
e formulaEq. (6.7).6 Only the �rst term of Eq. (6.15) is nonzero, so that for the 2DEG only1The general 
ase is that S(E;B) 
an only be pie
ewise inverted. The following derivation 
an beextended to this situation. This introdu
es only the in
onvenien
e to notate the 
orre
t bran
h or, ifne
essary, the sum over the relevant bran
hes.2If the Maslov index �po is repla
ed by the re
e
tion phase 'R, a third term shows up in the following
al
ulation, sin
e 'R depends on B and E.3The other terms of Eq. (6.11), of 
ourse, may give rise to additional higher-order 
ontributions.4Alternatively, Æ�Ixy 
an be dire
tly evaluated from Æg of Eq. (4.11).5Note that the sheet density 
ontains powers of �h, sin
e ns = EFm=(2��h2).6Note that ensB = �0w
�s and 1w
�s � w
�s1+(w
�s)2 = 1w
�s[1+(w
�s)2℄ to 
ompare with Eq. (6.7).
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ondu
tan
e of the free 2DEG
orre
tions in se
ond leading order �h show up. The prefa
tor of Æ��hxy 
ompared to theprefa
tor of Æ�Ixy in
reases linearly in B. Therefore this 
orre
tion, although of lower orderin �h, be
omes dominant in strong �elds.The in
uen
e of this �h 
orre
tion is presented in Fig. 6.3. The solid line indi
ates thesemi
lassi
al result in leading order in �h, as given above. The dashed line in
ludes the
orre
tion of Æ��hxy. The semi
lassi
al tra
e formula now reprodu
es the plateaus in theHall resistan
e, i. e. the QHE. This shows that the quantum Hall e�e
t is dominantly ane�e
t of se
ond leading order in �h. Its origin is the dependen
e of the period Tppo = dS=dEon the magneti
 �eld.
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0Figure 6.3: The longitudinal and the Hall resistivity for the free 2DEG. Solid:semi
lassi
al result in leading order in �h as in Fig. 6.2; dashed: semi
lassi
al resultin
luding the �h 
orre
tion of Eq. (6.16). The 
orre
tion to the longitudinal resistan
eis negligible. The quantized 
ondu
tion, however is purely an e�e
t of se
ond leadingorder in �h. Insets show the in
uen
e of mobility and temperature on �xy. Dashed:results of the 
entral graphi
 (� = 100m2V�1s�1, T = 10K); solid: � = 50m2V�1s�1(left inset), T = 3K and T = 50K (right inset).The left inset shows the in
uen
e of the mobility on the QHE. The dashed line is a 
opy ofthe result shown in the the main graphi
. It 
orresponds to � = 100m2V�1s�1. The solidline shows the data for � = 50m2V�1s�1. The Hall resistivity is hardly in
uen
ed by theamount of disorder. This does not agree with the established pi
ture of the QHE, wherethe width of the lo
alized states, and thus the width of the Hall plateaus, depends on theimpurity 
on
entration. The reason for this de�
ien
y of the semi
lassi
al approximationin the non-ballisti
 regime has already been given dis
ussing the peak widths of the SdHos
illations above. Additionally, the validity of the present in
lusion of �nite free path-lengths is, as stated in Se
t. 3.1, limited to the leading order in �h. It thus 
annot beexpe
ted that this simple formalism reprodu
es the behaviour of higher-order �h terms



6.4 �h 
orre
tion from the level density 67
orre
tly.7In the right inset of Fig. 6.3 the temperature dependen
e is depi
ted. The solid lines are
al
ulated for T = 3K and T = 50K, respe
tively. For low temperatures the step-fun
tionis approa
hed, whereas large temperatures smear the steps until the 
lassi
al linear re-sult is re
overed. The temperature is therefore 
orre
tly in
luded in the semi
lassi
alapproximation.8In 
on
lusion, the semi
lassi
al Kubo formula su

essfully explains the longitudinal 
on-du
tivity of the 2DEG, but fails for the Hall 
omponent. The �h 
orre
tions a

ording toEq. (6.15) are the key ingredients for a semi
lassi
al des
ription of the Hall 
ondu
tivity.The term in se
ond leading order in �h is responsible for the integer quantum hall e�e
t.In
luding this term, the semi
lassi
al Kubo formula explains both the Shubnikov-de-Haasos
illations and the QHE. It also reprodu
es the temperature dependen
e of these e�e
ts
orre
tly. The approa
h is, however, limited to the ballisti
 regime. It therefore fails fore�e
ts that are related to lo
alization, like the dependen
e of the QHE plateau widthon the mobility. To des
ribe these dependen
ies, periodi
 orbits whi
h in
lude s
atteringevents would have to be taken into a

ount.The dis
ussion of the Hall resistivity was restri
ted to the free 2DEG. The higher-order�h 
orre
tions, however, were derived for arbitrary systems. They are not only relevantfor samples whi
h exhibit 
y
lotron-like orbits. For arbitrary systems, Æ��hxy 
ontainsthe relevant 
orre
tions if the semi
lassi
al des
ription of Æg is suÆ
iently good, i. e. thehigher-order �h 
ontributions to the level density 
an be negle
ted. Sin
e this 
onditionis frequently ful�lled, it is justi�ed to in
lude at least the se
ond leading order term ofEq. (6.15) in all semi
lassi
al des
riptions of the Hall 
ondu
tivity.

7Note that in this situation the pro
edure of Se
t. 3.3 
annot be applied, sin
e it starts out from theassumption that the line shape is known. The 
al
ulation of line shapes (or Hall plateaux widths) is thusobviously beyond the s
ope of this approa
h.8This had to be expe
ted, sin
e the in
lusion of �nite temperature is exa
t for grand 
anoni
al systemsas long as phonon s
attering 
an be negle
ted (
f. Se
t. 5.4).




