
Chapter 6Magnetoondutane of the free2DEGThe experimental realization of a free two dimensional eletron gas (2DEG) is out-lined. The Shubnikov-de-Haas osillations (SdH) in its longitudinal resistivity arereprodued by the semilassial Kubo formula, but the plateaus in the Hall resistivity,i. e. the integer quantum Hall e�et (QHE), are not. The desription of the QHEsueeds by inluding a spei� higher-order �h term originating from the level density.The orresponding orretion is derived for general systems.
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60 Chapter 6: Magnetoondutane of the free 2DEGThe free two dimensional eletron gas (2DEG) is predisposed as a test system for thesemilassial Kubo formula Eq. (5.4). The longitudinal ondutivity in the presene of atransverse magneti �eld B was already evaluated by the authors of the semilassial Kuboformula [63, 41℄. In the following setions, both the longitudinal and the Hall ondutivityfor the free 2DEG are derived. The resulting desription is also valid for partiles withspin. For those, ns denotes the eletron density per spin orientation, i. e. ns = 2(S+1=2)ne.For spin-less partiles, ns is given by the total eletron sheet density ne.6.1 Two dimensional eletron gasThe eletroni bands of semiondutors bend at interfaes. In a suitable designed hetero-struture (e. g. GaAs/GaAlAs), this leads to a narrow, triangular region at the interfaewhere the ondution band is below the Fermi energy. EF an be hosen so that only thelowest eigenstate of this well is oupied. For suÆiently low thermal energies higher statesare energetially unaessible, so that the orresponding degree of freedom is bloked.From a quantum mehanial point of view, suh a system is truly two-dimensional. Fig. 6.1illustrates this situation.
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Figure 6.1: Upper part: The mehanism leading to a 2DEG at the interfae. Lowerpart: An undoped spaer layer between GaAs and n-GaAlAs redues impurity satter-ing at the donors. The 2DEG an additionally be laterally on�ned by eletrostatigates (left), shallow ething (middle) or deep ething (right).Implementing the donors at a distane from the interfae extremely redues the impuritysattering. At low temperatures, where eletron-phonon sattering an be negleted, thisis nevertheless the dominant sattering mehanism. This omes about as semiondutorsan nowadays be produed with extremely low ontaminations and lattie defets. Thelatter is failitated by the nearly idential lattie onstants of GaAs and GaAlAs. Forthese reasons, the mobility of those devies an be extremely high. The mean-free pathin state-of-the-art samples exeeds 10�m.An additional lateral on�nement of the 2DEG is possible either by ething or by applyingeletrostati gates. By eletron beam lithography strutures in the 10nm regime an bede�ned. This is omparable to the Fermi wavelength, whih is typially of the order ofsome 10nm.



6.3 The lassial ondutivity 616.2 The lassial ondutivityIn the lassial piture, an external eletri �eld aelerates the eletrons. Due to impurityollisions, they aquire an average drift veloity ~vd = ��~E. The mobility � is related tothe sattering time �s via � = e�s=m?, and the mean-free path is given by ` = vF �s. Thelassial magnetoondutivity an be derived using the Einstein relatione� = e2 g(EF )D ; (6.1)where g denotes the level density and D the di�usion tensor. D an be evaluated withinlinear response, leading to [103℄Dij = Z 10 dt hvi(t) vj(0)i ; (6.2)where the brakets denote an average over the Fermi surfae. This �nally leads to theDrude ondutivity tensor (for a detailed derivation see e. g. Ref. [99℄)e� = �01 + (!�s)2 � 1 �!�s!�s 1 � ; �0 = nse2�sm? = nse� : (6.3)The symmetry of the system enfores e�xx = e�yy and e�xy = �e�yx. Using Eq. (5.10), theresistivity tensor e� is given bye� = �0 � 1 !�s�!�s 1 � ; �0 = 1�0 = m?nse2�s : (6.4)The lassial longitudinal resistivity e�xx = �0 = m?=(nee2�s) is independent of the mag-neti �eld. Experimentally, the lassial limit is reovered in the low-�eld regime. There-fore the measurement of e�xxjB=0 is a onvenient way to determine the mobility � (andthus the sattering time �s). The Hall resistivity e�xy = B=(ens) is proportional to themagneti �eld, whih is onsistent with the usual de�nition of the Hall resistane.In analogy to the smooth part of the level density eg onsidered above, the lassial (smooth)part of the ondutivity (resistivity) of the free 2DEG aording to Eq. (6.3) (Eq. (6.4))is denoted with a tilde.6.3 Leading order in �hThe trae formula for the osillating part of the ondutivity given in Se. 5.5 is, just asthe Gutzwiller trae formula, only valid for isolated periodi orbits. An extension to thease of the free 2DEG with its two-dimensional translational symmetry is possible usingan approah analog to Creagh and Littlejohn's treatment of the level density for systemswith ontinuous symmetries (see Se. 2.3, espeially Eq. (2.15)). Alternatively one anproeed as for the alulation of the level density assoiated with the ylotron orbits(f. Se. 4.2.1.3). Both approahes redue the problem to a one dimensional harmoniosillator with an additional fator� = V � eB2��h (6.5)



62 Chapter 6: Magnetoondutane of the free 2DEGfrom integration over the symmetry. The ylotron orbit is the only primitive periodiorbit of the system, so that the sum over all orbits in the trae formula redues to thesum over its repetitions. The veloity-veloity orrelation of the primitive periodi orbitaording to Eq. (5.7) an be alulated analytially, resulting inCxx = R2� !�s1 + (!�s)2 and Cxy = R2� (!�s)21 + (!�s)2 ; (6.6)with the ylotron frequeny w = eB=m? and the ylotron radius R = �h=eB � p4�ns.Inserting all this into Eq. (5.4) and denoting the period of the primitive orbit with T0 =2�=! results inÆ�xx = 2 �01 + (!�s)2 1Xp=1R(pT0)e�p2T0=2�s os �2�p� eE � 12��Æ�xy = �2 1!�s �01 + (!�s)2 1Xp=1R(pT0)e�p2T0=2�s os �2�p� eE � 12�� : (6.7)The relation between �xx and �xy is remarkable: Both the lassial ontributions aordingto Eq. (6.3) and the osillating parts of Eq. (6.7) are proportional to eah other, but withinverse fators:e�xy = �!�s � e�xx ; and Æ�xy = �1=(!�s) � Æ�xx : (6.8)In the strong �eld limit the lassial Hall ondutivity thus dominates over the longitudinalondutivity (e�xy � e�xx), and the quantum osillations in �xy are suppressed omparedto the osillations in �xx (Æ�xy � Æ�xx).On Landau levels, the normalized energy eE in Eq. (6.7) is idential to the Landau quantumnumber. For spin-less partiles it is therefore given by eE = EF=(�h!) = 2��hns=(eB).Inluding spin leads toeE = EF�h! + sg?12m?me ; (6.9)with the spin quantum number s and the Land�e g-fator g? of the material. For the2DEG in GaAs, s = �1=2 and g?m?=me � �0:0293. This orresponds to a spin splittingof � 1:5% of the Landau level separation, whih usually annot be deteted. For InAs, inontrast, g?m?=me � 0:338, leading to a separation of the two spin peaks of � 17% of theLandau level distane. This explains why in GaAs/GaAlAs heterostrutures the spin isgenerally negleted. Inluding spin, the ontributions of the spin-subsystems to Æ� haveto be added. As obvious from Eq. (6.9), the inlusion of spin only leads to a shift of theLandau levels. Sine within this approah no additional spin-related e�ets are inluded,the disussion of Eq. (6.7) an be restrited to spin-less partiles without loss of generality.The total resistivity � = ��1 is found by adding the lassial part aording to Eq. (6.4)and the semilassial approximation of the quantum osillations of Eq. (6.7), i. e.� = e� + Æ� : (6.10)



6.3 Leading order in �h 63For the longitudinal ondutivity �xx, the quantum mehanial self-onsistent Born ap-proximation for short-range satters [9, 87℄ in the low-�eld regime !�s < 1 is equivalentto this semilassial result.In Fig. 6.2 the result of Eq. (6.7) for �xx and �xy is shown for a system with eletrondensity ns = 1:0 � 1016m�2 and mobility � = 100m2V�1s�1 at a temperature of 10K.The lassial resistivity (solid) is ompared to the semilassial desription (dashed). Thequantum osillations to �xx are seen to be an important orretion in large �elds. Theygive rise to the Shubnikov-de-Haas (SdH) osillations.
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Figure 6.2: The diagonal and the Hall resistivity of the free 2DEG. Solid: lassialresult of Eq. (6.4); dashed: semilassial results aording to Eqs. (6.10, 6.7, 6.4). TheSdH osillations in the longitudinal resistivity are well reprodued, but the QHE is notreovered in the semilassial approximation. Insets show the inuene of mobility(left) and temperature (right) on �xx. Dashed: results of the entral graphi (� =100m2V�1s�1, T = 10K); solid: � = 50m2V�1s�1 (left inset), T = 3K (right inset).The dependene on the satterer density is illustrated in the left inset. The dashed linerepeats the result of the main graphi with � = 100m2V�1s�1, whereas the solid lineorresponds to � = 50m2V�1s�1. The zero �eld resistane is, as expeted from Eq. (6.4),inverse proportional to the mobility. The amplitude of the SdH osillations inreaseswith lower mobility, and their relative width remains essentially unhanged. This is notonsistent with the general aepted piture of the SdH osillations. An inreased sattererdensity extends the region of loalized states between the Landau levels, pushing themobility edges loser to the Landau levels. This leads to sharper peaks in �xx. Theloalization of states is semilassially due to periodi orbits whih inlude satteringevents. As pointed out in Se. 5.2, those have been negleted in the derivation of thesemilassial Kubo formula. Therefore the semilassial approximation for the di�usivelimit an not be expeted to desribe the SdH line widths orretly.The right inset shows the inuene of temperature. The dashed line repeats the result ofthe entral graphi for T = 10K, whereas the solid line orresponds to T = 3K. The SdHosillations get sharper for lower temperatures. High temperatures lead, as expeted, to



64 Chapter 6: Magnetoondutane of the free 2DEGthe lassial limit �xx = �0. This is the orret temperature dependene.In onlusion, the longitudinal resistivity of the 2DEG is well approximated by the semi-lassial Kubo formula. It only fails to reprodue the orret dependene of the peakwidths on the mobility. This is due to the neglet of periodi orbits inluding sattering.In ontrast to the suessful desription of �xx, the semilassial approximation of theHall resistivity is inadequate. The semilassial orretion to the o�-diagonal resistivityEq. (6.7) plotted in Fig. 6.2 is ompletely negligible. It does not reprodue the integerquantum Hall e�et (QHE).6.4 �h orretion from the level densityThe failure of the semilassial desription for �xy might be due to the restrition to leadingorder in �h. Higher-order orretions an be implemented by going bak to the quantummehanial formula for the linear transport properties proposed by Str�eda [75℄:V � �xx = �e2�hTr[vxÆ(E �H)vxÆ(E �H)℄ (6.11)V � �xy = e �N(E;B)�B + i2e2�hTr[vxG+(E)vyÆ(E �H) � vxÆ(E �H)vyG�(E)℄ :Here G� denotes the advaned and retarded Green's funtion, respetively. The seondterm of �xy is analog to the expression for �xx. This well approximated by the semilassialKubo formula, indiating that higher-order orretions to this term are irrelevant.In the following, a higher-order orretion to �N=�B shall be derived. It should not berestrited to the free 2DEG, so that the general form of a semilassial level density ishosen as starting point:Æg(E) = 1�h(k+2)=2 Xpo Apo Tppo os�Spo�h � �po�2� ; (6.12)The damping terms due to temperature and impurities as well as other prefators are in-luded in the amplitudes Apo for notational onveniene. The volume term of the Thomas-Fermi level density, whih gives the leading ontribution to the smooth part of g(E), isindependent of the magneti �eld. Therefore only the osillating part of the level densityontributes to �N=�B. UsingÆN(E;B) = Z EF0 Æg(E;B) dE ; (6.13)the semilassial approximation for the �rst term in Eq. (6.11) an be expressed asÆ�Ixy := e �N(E;B)�B = e �[ÆN(E;B)℄�B (6.14)� � e�h(k+2)=2 Xpo 1p ��B Z EF0 Apo(E;B)�Spo�E os�Spo(E;B)�h � �po�2� dE= � e�h(k+2)=2 Xpo 1p ��B Z S(EF ;B)S(0;B) Apo(S;B) os�Spo(S;B)�h � �po�2� dS :



6.4 �h orretion from the level density 65In the seond line it was used that the period of an orbit is given by Tpo = p � Tppo =p ��Sppo=�E, where p denotes the winding number. The last step assumed that the ationS(E;B) is invertible1 , so that E(S;B) is uniquely de�ned for all S and B. The integralover S an be performed by subsequent partial integration. The partial derivative withrespet to B ats both on the semilassial amplitude of the orbit and on the ation.2Taking these derivatives and sorting the terms in powers of �h �nally leads toÆ�Ixy � �e�h(k+2)=2 Xpo 1p"Apo�Spo�B os�Spo�h � �po�2�#E=EFE=0 + Æ��hxy ; (6.15)Æ��hxy = �e�h(k+2)=2 Xpo 1p" 1Xi=1 �hi os�Spo�h � �po�2 + i�2����� didSiApo(S;B)� �Spo�B � ��B � di�1dSi�1Apo(S;B)��#E=EFE=0 :The leading order in �h is given by the �rst term of Æ�Ixy in Eq. (6.15). If the ontribu-tion of the lower integration limit vanishes, this reprodues the term 1=e �S=�B of thesemilassial Kubo formula Eq. (5.4). Æ��hxy gives a series of �h-orretions.The starting point of this derivation is given by the semilassial level density, whih byitself is only valid in leading order in �h. Higher-order orretions to Æg entail additionalterms to Eq. (6.15). If the semilassial approximation of the level density of the systemis good, Æ��hxy as given in Eq. (6.15) ontains the dominant orretions.For the free 2DEG this ondition is ful�lled, sine the semilassial approximation of itslevel density is exat (f. Se. 4.2.1.3). For this system all �h orretions to Æ�Ixy are inludedin Eq. (6.15).3 The relevane of the �h orretions in Eq. (6.15) for the ondutivity tensorof the free 2DEG shall now be disussed.By writing the prefators of the level density Eq. (4.11) as a produt of dS=dE andan amplitude, Eq. (6.15) an be applied to the free 2DEG.4 Inluding expliitly �nitetemperature and impurities by appropriate damping terms, the result readsÆ�Ixy = 2ensB 1Xp=1 R(pT0)e�p2T0=2�s os �2�p� eE � 12��+ Æ��hxy ;Æ��hxy = � e2h� 1Xp=1 1pR(pT0)e�p2T0=2�s sin �2�p� eE � 12�� : (6.16)The period of the primitive ylotron orbit is given by T0 = 2�m=(eB). The �rst termof Æ�Ixy is the leading-order ontribution in �h5. It is already inluded in the trae formulaEq. (6.7).6 Only the �rst term of Eq. (6.15) is nonzero, so that for the 2DEG only1The general ase is that S(E;B) an only be pieewise inverted. The following derivation an beextended to this situation. This introdues only the inonveniene to notate the orret branh or, ifneessary, the sum over the relevant branhes.2If the Maslov index �po is replaed by the reetion phase 'R, a third term shows up in the followingalulation, sine 'R depends on B and E.3The other terms of Eq. (6.11), of ourse, may give rise to additional higher-order ontributions.4Alternatively, Æ�Ixy an be diretly evaluated from Æg of Eq. (4.11).5Note that the sheet density ontains powers of �h, sine ns = EFm=(2��h2).6Note that ensB = �0w�s and 1w�s � w�s1+(w�s)2 = 1w�s[1+(w�s)2℄ to ompare with Eq. (6.7).



66 Chapter 6: Magnetoondutane of the free 2DEGorretions in seond leading order �h show up. The prefator of Æ��hxy ompared to theprefator of Æ�Ixy inreases linearly in B. Therefore this orretion, although of lower orderin �h, beomes dominant in strong �elds.The inuene of this �h orretion is presented in Fig. 6.3. The solid line indiates thesemilassial result in leading order in �h, as given above. The dashed line inludes theorretion of Æ��hxy. The semilassial trae formula now reprodues the plateaus in theHall resistane, i. e. the QHE. This shows that the quantum Hall e�et is dominantly ane�et of seond leading order in �h. Its origin is the dependene of the period Tppo = dS=dEon the magneti �eld.
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0Figure 6.3: The longitudinal and the Hall resistivity for the free 2DEG. Solid:semilassial result in leading order in �h as in Fig. 6.2; dashed: semilassial resultinluding the �h orretion of Eq. (6.16). The orretion to the longitudinal resistaneis negligible. The quantized ondution, however is purely an e�et of seond leadingorder in �h. Insets show the inuene of mobility and temperature on �xy. Dashed:results of the entral graphi (� = 100m2V�1s�1, T = 10K); solid: � = 50m2V�1s�1(left inset), T = 3K and T = 50K (right inset).The left inset shows the inuene of the mobility on the QHE. The dashed line is a opy ofthe result shown in the the main graphi. It orresponds to � = 100m2V�1s�1. The solidline shows the data for � = 50m2V�1s�1. The Hall resistivity is hardly inuened by theamount of disorder. This does not agree with the established piture of the QHE, wherethe width of the loalized states, and thus the width of the Hall plateaus, depends on theimpurity onentration. The reason for this de�ieny of the semilassial approximationin the non-ballisti regime has already been given disussing the peak widths of the SdHosillations above. Additionally, the validity of the present inlusion of �nite free path-lengths is, as stated in Set. 3.1, limited to the leading order in �h. It thus annot beexpeted that this simple formalism reprodues the behaviour of higher-order �h terms



6.4 �h orretion from the level density 67orretly.7In the right inset of Fig. 6.3 the temperature dependene is depited. The solid lines arealulated for T = 3K and T = 50K, respetively. For low temperatures the step-funtionis approahed, whereas large temperatures smear the steps until the lassial linear re-sult is reovered. The temperature is therefore orretly inluded in the semilassialapproximation.8In onlusion, the semilassial Kubo formula suessfully explains the longitudinal on-dutivity of the 2DEG, but fails for the Hall omponent. The �h orretions aording toEq. (6.15) are the key ingredients for a semilassial desription of the Hall ondutivity.The term in seond leading order in �h is responsible for the integer quantum hall e�et.Inluding this term, the semilassial Kubo formula explains both the Shubnikov-de-Haasosillations and the QHE. It also reprodues the temperature dependene of these e�etsorretly. The approah is, however, limited to the ballisti regime. It therefore fails fore�ets that are related to loalization, like the dependene of the QHE plateau widthon the mobility. To desribe these dependenies, periodi orbits whih inlude satteringevents would have to be taken into aount.The disussion of the Hall resistivity was restrited to the free 2DEG. The higher-order�h orretions, however, were derived for arbitrary systems. They are not only relevantfor samples whih exhibit ylotron-like orbits. For arbitrary systems, Æ��hxy ontainsthe relevant orretions if the semilassial desription of Æg is suÆiently good, i. e. thehigher-order �h ontributions to the level density an be negleted. Sine this onditionis frequently ful�lled, it is justi�ed to inlude at least the seond leading order term ofEq. (6.15) in all semilassial desriptions of the Hall ondutivity.

7Note that in this situation the proedure of Set. 3.3 annot be applied, sine it starts out from theassumption that the line shape is known. The alulation of line shapes (or Hall plateaux widths) is thusobviously beyond the sope of this approah.8This had to be expeted, sine the inlusion of �nite temperature is exat for grand anonial systemsas long as phonon sattering an be negleted (f. Set. 5.4).




