Chapter 6

Magnetoconductance of the free

2DEG

The experimental realization of a free two dimensional electron gas (2DEG) is out-
lined. The Shubnikov-de-Haas oscillations (SdH) in its longitudinal resistivity are
reproduced by the semiclassical Kubo formula, but the plateaus in the Hall resistivity,
i. e. the wnteger quantum Hall effect (QHE), are not. The description of the QHE
succeeds by including a specific higher-order i term originating from the level density.

The corresponding correction is derived for general systems.
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The free two dimensional electron gas (2DEG) is predisposed as a test system for the
semiclassical Kubo formula Eq. (5.4). The longitudinal conductivity in the presence of a
transverse magnetic field B was already evaluated by the authors of the semiclassical Kubo
formula [63, 41]. In the following sections, both the longitudinal and the Hall conductivity
for the free 2DEG are derived. The resulting description is also valid for particles with
spin. For those, n, denotes the electron density per spin orientation, i.e. ny = 2(S+1/2)n..
For spin-less particles, n; is given by the total electron sheet density n..

6.1 Two dimensional electron gas

The electronic bands of semiconductors bend at interfaces. In a suitable designed hetero-
structure (e.g. GaAs/GaAlAs), this leads to a narrow, triangular region at the interface
where the conduction band is below the Fermi energy. Er can be chosen so that only the
lowest eigenstate of this well is occupied. For sufficiently low thermal energies higher states
are energetically unaccessible, so that the corresponding degree of freedom is blocked.
From a quantum mechanical point of view, such a system is truly two-dimensional. Fig. 6.1
illustrates this situation.
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Figure 6.1:  Upper part: The mechanism leading to a 2DEG at the interface. Lower
part: An undoped spacer layer between GaAs and n-GaAlAs reduces itmpurity scatter-
ing at the donors. The 2DEG can additionally be laterally confined by electrostatic
gates (left), shallow etching (middle) or deep etching (right).

Implementing the donors at a distance from the interface extremely reduces the impurity
scattering. At low temperatures, where electron-phonon scattering can be neglected, this
is nevertheless the dominant scattering mechanism. This comes about as semiconductors
can nowadays be produced with extremely low contaminations and lattice defects. The
latter is facilitated by the nearly identical lattice constants of GaAs and GaAlAs. For
these reasons, the mobility of those devices can be extremely high. The mean-free path
in state-of-the-art samples exceeds 10pm.

An additional lateral confinement of the 2DEG is possible either by etching or by applying
electrostatic gates. By electron beam lithography structures in the 10nm regime can be
defined. This is comparable to the Fermi wavelength, which is typically of the order of
some 10nm.
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6.2 The classical conductivity

In the classical picture, an external electric field accelerates the electrons. Due to impurity
collisions, they acquire an average drift velocity vy = —;LE. The mobility p is related to
the scattering time 75 via p = e75/m*, and the mean-free path is given by £ = vp7;. The
classical magnetoconductivity can be derived using the Einstein relation

7=’ g(Erp)D , (6.1)

where ¢ denotes the level density and D the diffusion tensor. D can be evaluated within
linear response, leading to [103]

Dy = [t (w(t) (0. (6.2

where the brackets denote an average over the Fermi surface. This finally leads to the
Drude conductivity tensor (for a detailed derivation see e.g. Ref. [99])
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The symmetry of the system enforces 7,, = 7,y and 0,, = —0,,. Using Eq. (5.10), the

resistivity tensor p is given by
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The classical longitudinal resistivity p,. = po = m*/(n.e’7,) is independent of the mag-
netic field. Experimentally, the classical limit is recovered in the low-field regime. There-
fore the measurement of p,.|p=o is a convenient way to determine the mobility p (and
thus the scattering time 7). The Hall resistivity p,, = B/(en,) is proportional to the
magnetic field, which is consistent with the usual definition of the Hall resistance.

In analogy to the smooth part of the level density g considered above, the classical (smooth)
part of the conductivity (resistivity) of the free 2DEG according to Eq. (6.3) (Eq. (6.4))
is denoted with a tilde.

6.3 Leading order in h

The trace formula for the oscillating part of the conductivity given in Sec. 5.5 is, just as
the Gutzwiller trace formula, only valid for isolated periodic orbits. An extension to the
case of the free 2DEG with its two-dimensional translational symmetry is possible using
an approach analog to Creagh and Littlejohn’s treatment of the level density for systems
with continuous symmetries (see Sec. 2.3, especially Eq. (2.15)). Alternatively one can
proceed as for the calculation of the level density associated with the cyclotron orbits
(cf. Sec. 4.2.1.3). Both approaches reduce the problem to a one dimensional harmonic
oscillator with an additional factor

eB

=V 2
" 27h

(6.5)
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from integration over the symmetry. The cyclotron orbit is the only primitive periodic
orbit of the system, so that the sum over all orbits in the trace formula reduces to the
sum over its repetitions. The velocity-velocity correlation of the primitive periodic orbit
according to Eq. (5.7) can be calculated analytically, resulting in
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with the cyclotron frequency w. = eB/m* and the cyclotron radius R. = h/eB - \/4nn.
Inserting all this into Eq. (5.4) and denoting the period of the primitive orbit with Ty =
27 [w, results in
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The relation between ., and ., is remarkable: Both the classical contributions according
to Eq. (6.3) and the oscillating parts of Eq. (6.7) are proportional to each other, but with
inverse factors:

Oay = —WeTs * Oy, and 00,y = —1/(weTs) - 0044 (6.8)

In the strong field limit the classical Hall conductivity thus dominates over the longitudinal
conductivity (0,4 > G42), and the quantum oscillations in o,, are suppressed compared
to the oscillations in 0,, (0o, K d0u,).

On Landau levels, the normalized energy Ein Eq. (6.7) is identical to the Landau quantum
number. For spin-less particles it is therefore given by E = Ep/(hw.) = 2whng/(eB).
Including spin leads to

B Er L1m*

(6.9)

= s$g* = ,
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with the spin quantum number s and the Landé g-factor ¢g* of the material. For the
2DEG in GaAs, s = £1/2 and g*m*/m. ~ —0.0293. This corresponds to a spin splitting
of =~ 1.5% of the Landau level separation, which usually cannot be detected. For InAs, in
contrast, g*m*/m, =~ 0.338, leading to a separation of the two spin peaks of & 17% of the
Landau level distance. This explains why in GaAs/GaAlAs heterostructures the spin is
generally neglected. Including spin, the contributions of the spin-subsystems to dg have
to be added. As obvious from Eq. (6.9), the inclusion of spin only leads to a shift of the
Landau levels. Since within this approach no additional spin-related effects are included,
the discussion of Eq. (6.7) can be restricted to spin-less particles without loss of generality.

The total resistivity p = o~ ! is found by adding the classical part according to Eq. (6.4)
and the semiclassical approximation of the quantum oscillations of Eq. (6.7), i.e.

c=0+do. (6.10)
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For the longitudinal conductivity o,,, the quantum mechanical self-consistent Born ap-
proximation for short-range scatters [9, 87] in the low-field regime w.7s < 1 is equivalent
to this semiclassical result.

In Fig. 6.2 the result of Eq. (6.7) for p,, and p,, is shown for a system with electron
density n, = 1.0 - 10°m~? and mobility ¢ = 100m>V~1s~! at a temperature of 10K.
The classical resistivity (solid) is compared to the semiclassical description (dashed). The
quantum oscillations to p,, are seen to be an important correction in large fields. They
give rise to the Shubnikov-de-Haas (SdH) oscillations.
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Figure 6.2: The diagonal and the Hall resistivity of the free 2DEG. Solid: classical
result of Eq. (6.4); dashed: semiclassical results according to Eqs. (6.10, 6.7, 6.4). The
SdH oscillations in the longitudinal resistivity are well reproduced, but the QHE is not
recovered n the semiclassical approximation. Insets show the influence of mobility
(left) and temperature (right) on pyry. Dashed: results of the central graphic (pu =
100m*V1s™! T = 10K); solid: pn = 50m*V s~ (left inset), T = 3K (right inset).

The dependence on the scatterer density is illustrated in the left inset. The dashed line
repeats the result of the main graphic with p = 100m?V~!s71, whereas the solid line
corresponds to g = 50m2V 1571, The zero field resistance is, as expected from Eq. (6.4),
inverse proportional to the mobility. The amplitude of the SAH oscillations increases
with lower mobility, and their relative width remains essentially unchanged. This is not
consistent with the general accepted picture of the SAH oscillations. An increased scatterer
density extends the region of localized states between the Landau levels, pushing the
mobility edges closer to the Landau levels. This leads to sharper peaks in p,,. The
localization of states is semiclassically due to periodic orbits which include scattering
events. As pointed out in Sec. 5.2, those have been neglected in the derivation of the
semiclassical Kubo formula. Therefore the semiclassical approximation for the diffusive

limit can not be expected to describe the SdH line widths correctly.

The right inset shows the influence of temperature. The dashed line repeats the result of
the central graphic for T' = 10K, whereas the solid line corresponds to T'= 3K. The SdH
oscillations get sharper for lower temperatures. High temperatures lead, as expected, to
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the classical limit p,, = po. This is the correct temperature dependence.

In conclusion, the longitudinal resistivity of the 2DEG is well approximated by the semi-
classical Kubo formula. It only fails to reproduce the correct dependence of the peak
widths on the mobility. This is due to the neglect of periodic orbits including scattering.
In contrast to the successful description of p,., the semiclassical approximation of the
Hall resistivity is inadequate. The semiclassical correction to the off-diagonal resistivity

Eq. (6.7) plotted in Fig. 6.2 is completely negligible. It does not reproduce the integer
quantum Hall effect (QHE).

6.4 % correction from the level density

The failure of the semiclassical description for p,, might be due to the restriction to leading
order in fi. Higher-order corrections can be implemented by going back to the quantum
mechanical formula for the linear transport properties proposed by Stréda [75]:

V.ow = re?h Tr[v,0(E — H)v,d(E — H)] (6.11)
ON(E.B) i . .
Vo, = e % + %th Tr[v, G*(E)v,6(E — H) — v,0(E — H)v,G™ (E)] .

Here G* denotes the advanced and retarded Green’s function, respectively. The second
term of 0, is analog to the expression for o,,. This well approximated by the semiclassical
Kubo formula, indicating that higher-order corrections to this term are irrelevant.

In the following, a higher-order correction to ON/9B shall be derived. It should not be
restricted to the free 2DEG, so that the general form of a semiclassical level density is
chosen as starting point:

1 So T
dg(E) = Py Z Apo Thpo cos <% - /,Lp05> , (6.12)
po

The damping terms due to temperature and impurities as well as other prefactors are in-
cluded in the amplitudes A, for notational convenience. The volume term of the Thomas-
Fermi level density, which gives the leading contribution to the smooth part of g(E), is
independent of the magnetic field. Therefore only the oscillating part of the level density
contributes to ON/9B. Using

Ep
SN(E,B) = / 59(E. B) dE . (6.13)
J 0

the semiclassical approximation for the first term in Eq. (6.11) can be expressed as
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In the second line it was used that the period of an orbit is given by Tp,o = p - Tppo =
p-0Sppo/OE, where p denotes the winding number. The last step assumed that the action
S(E. B) is invertible!, so that E(S, B) is uniquely defined for all S and B. The integral

over S can be performed by subsequent partial integration. The partial derivative with

respect to B acts both on the semiclassical amplitude of the orbit and on the action.?

Taking these derivatives and sorting the terms in powers of A finally leads to
S E:EF
m h
Apo 3B cos ( ;ZO — ,LLp()E) ] + b0y, (6.15)
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The leading order in h is given by the first term of (5(riy in Eq. (6.15). If the contribu-

E:EF

E=0

tion of the lower integration limit vanishes, this reproduces the term 1/edS/90B of the
semiclassical Kubo formula Eq. (5.4). 50;‘3/ gives a series of fi-corrections.

The starting point of this derivation is given by the semiclassical level density, which by
itself is only valid in leading order in h. Higher-order corrections to d¢ entail additional
terms to Eq. (6.15). If the semiclassical approximation of the level density of the system
is good, 502’!/ as given in Eq. (6.15) contains the dominant corrections.

For the free 2DEG this condition is fulfilled, since the semiclassical approximation of its
level density is exact (cf. Sec. 4.2.1.3). For this system all f corrections to 50£y are included
in Eq. (6.15).> The relevance of the h corrections in Eq. (6.15) for the conductivity tensor
of the free 2DEG shall now be discussed.

By writing the prefactors of the level density Eq. (4.11) as a product of dS/dE and
an amplitude, Eq. (6.15) can be applied to the free 2DEG.? Including explicitly finite
temperature and impurities by appropriate damping terms. the result reads

2e 'S = n2’ ~ 1
5O'QI:y = Z Z R pTO)C—p‘To/2TS cos |:27'rp (E — §>:| + do ]Zy s
p=1
2 o0
h ¢ —p? \ ~ 1
50333/ = _E;pR PTO p*To /2T sin [27rp <E - 5)] . (6.16)

The pe1i0d of the primitive cyclotron orbit is given by Ty = 27m/(eB). The first term
of 50 is the leading-order contribution in A°. It is already included in the trace formula
Eq. (6 7).5 Only the first term of Eq. (6.15) is nonzero, so that for the 2DEG only

!The general case is that S(E,B) can only be piecewise inverted. The following derivation can be
extended to this situation. This introduces only the inconvenience to notate the correct branch or, if
necessary, the sum over the relevant branches.

’If the Maslov index ji,,, is replaced by the reflection phase ¢r, a third term shows up in the following
calculation, since ¢ depends on B and E.

3The other terms of Eq. (6.11), of course, may give rise to additional higher-order contributions.

4 Alternatively, 6U£y can be directly evaluated from dg of Eq. (4.11).

®Note that the sheet density contains powers of h, since n, = Epm/(21h?).
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corrections in second leading order h show up. The prefactor of 60% compared to the
prefactor of 50£y increases linearly in B. Therefore this correction, although of lower order

in A, becomes dominant in strong fields.

The influence of this & correction is presented in Fig. 6.3. The solid line indicates the
semiclassical result in leading order in h, as given above. The dashed line includes the
correction of 50%. The semiclassical trace formula now reproduces the plateaus in the
Hall resistance, i.e. the QHE. This shows that the quantum Hall effect is dominantly an
effect of second leading order in h. Its origin is the dependence of the period Tpo = dS/dE
on the magnetic field.
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Figure 6.3:  The longitudinal and the Hall resistivity for the free 2DEG. Solid:
semiclassical result in leading order in b as in Fig. 6.2; dashed: semiclassical result
including the i correction of Eq. (6.16). The correction to the longitudinal resistance
1s negligible. The quantized conduction, however is purely an effect of second leading
order in . Insets show the influence of mobility and temperature on pyy. Dashed:
results of the central graphic (u = 100m?V~'s™' T =10K); solid: p = 50m?*V~'s™!
(left inset), T = 3K and T = 50K (right inset).

The left inset shows the influence of the mobility on the QHE. The dashed line is a copy of
the result shown in the the main graphic. It corresponds to p = 100m?V—ts~!. The solid
line shows the data for o = 50m?V s~ The Hall resistivity is hardly influenced by the
amount of disorder. This does not agree with the established picture of the QHE, where
the width of the localized states, and thus the width of the Hall plateaus, depends on the
impurity concentration. The reason for this deficiency of the semiclassical approximation
in the non-ballistic regime has already been given discussing the peak widths of the SAH
oscillations above. Additionally, the validity of the present inclusion of finite free path-
lengths is, as stated in Sect. 3.1, limited to the leading order in A. It thus cannot be
expected that this simple formalism reproduces the behaviour of higher-order h terms



6.4 h CORRECTION FROM THE LEVEL DENSITY 67

correctly.”

In the right inset of Fig. 6.3 the temperature dependence is depicted. The solid lines are
calculated for T = 3K and T' = 50K, respectively. For low temperatures the step-function
is approached, whereas large temperatures smear the steps until the classical linear re-
sult is recovered. The temperature is therefore correctly included in the semiclassical

approximation.®

In conclusion, the semiclassical Kubo formula successfully explains the longitudinal con-
ductivity of the 2DEG, but fails for the Hall component. The % corrections according to
Eq. (6.15) are the key ingredients for a semiclassical description of the Hall conductivity.
The term in second leading order in # is responsible for the integer quantum hall effect.
Including this term, the semiclassical Kubo formula explains both the Shubnikov-de-Haas
oscillations and the QHE. It also reproduces the temperature dependence of these effects
correctly. The approach is, however, limited to the ballistic regime. It therefore fails for
effects that are related to localization, like the dependence of the QHE plateau width
on the mobility. To describe these dependencies, periodic orbits which include scattering
events would have to be taken into account.

The discussion of the Hall resistivity was restricted to the free 2DEG. The higher-order
h corrections, however, were derived for arbitrary systems. They are not only relevant
for samples which exhibit cyclotron-like orbits. For arbitrary systems, (5023/ contains
the relevant corrections if the semiclassical description of dg is sufficiently good, i.e. the
higher-order % contributions to the level density can be neglected. Since this condition
is frequently fulfilled, it is justified to include at least the second leading order term of
Eq. (6.15) in all semiclassical descriptions of the Hall conductivity.

"Note that in this situation the procedure of Sect. 3.3 cannot be applied, since it starts out from the
assumption that the line shape is known. The calculation of line shapes (or Hall plateaux widths) is thus
obviously beyond the scope of this approach.

8This had to be expected, since the inclusion of finite temperature is exact for grand canonical systems
as long as phonon scattering can be neglected (cf. Sect. 5.4).






