
Chapter 5Semi
lassi
al TransportTransport properties are, in 
ontrast to the level density 
onsidered above, readilya

essible in experiment. This 
hapter gives a short introdu
tion to the semi
lassi-
al approximation of ele
tri
al transport within the linear response formalism. Theformulas presented will be used in the subsequent 
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52 Chapter 5: Semi
lassi
al TransportThe semi
lassi
al approximation of the level density has been su

essfully applied to hy-drogen as well as to Rydberg states [92, 52℄ and to neutral helium [28℄. In all these 
ases,the experimental observables are emission or absorption lines. A theoreti
al des
riptionhen
e has to resolve the individual energy levels of the system. This is feasible in a semi-
lassi
al approa
h, but not the most favorable appli
ation of this method. For the requiredfull quantization, many periodi
 orbits have to be in
luded in the tra
e formula. The ben-e�t from a semi
lassi
al approa
h is 
onsiderable larger for systems where the line widthsex
eed the mean level spa
ing. In these situations only the shell stru
ture is observed,whi
h usually depends only on a few orbits.Systems in this regime in
lude nu
lei, 
lusters and nanostru
tured devi
es { �nite fermionsystems with parti
le numbers of some 10 to a few 1000. For all these systems, semi
lassi
allevel density 
al
ulations have been performed. Su
h an analysis was presented for the�ssion barrier of nu
lei [19, 118℄ as well as for the shell stru
ture of metal 
lusters inmagneti
 �elds [77℄ and their ground-state deformation [121, 122, 59℄. Apart from theseexamples, the appli
ation of the standard tra
e formula to experimental situations is verylimited, as the level density is rarely dire
tly observable. In some 
ases a 
lose relationto the measured quantity 
an be assumed. Su
h an approa
h was used for the analysis ofthe mass distribution of sodium 
lusters [61℄ or the magneto
ondu
tan
e of a mesos
opi

ir
ular quantum dot [2℄.To extend the appli
ability of semi
lassi
al methods it is desirable to develop des
riptionsfor other physi
al quantities than the level density. This has been done for exampleregarding the magneti
 sus
eptibility [96, 78℄, 
urrent os
illations in I-V 
urves [114℄ orthe 
ondu
tan
e [63, 41℄.As already pointed out, nanostru
tured semi
ondu
tor devi
es are extremely versatile sys-tems. Many parameters like size, geometry, ele
tron density or magneti
 �eld 
an be variedexperimentally, some even during measurement. This opens up tremendous new theoret-i
al and experimental opportunities, as many of these parameters are beyond 
ontrol inmore \natural" systems like atoms and nu
lei. Most easily a

essible to measurement areele
tri
al transport properties. This is also an area of great 
ommer
ial interest: The rapiddevelopments in semi
ondu
tor te
hnology lead to 
ontinually de
reasing feature sizes onmemory or logi
 
ir
uits. The smallest stru
tures already approa
h the mesos
opi
 s
ale.It is for these reasons, the dire
t experimental a

ess, the great variability of the devi
e,the large number of 
ontrollable parameters, and the 
ommer
ial relevan
e that mu
h ofthe work on nanostru
tures deals with ele
tri
al transport properties.A quantum me
hani
al des
ription of these systems is very demanding. The usually largenumber of ele
trons involves the 
al
ulation of numerous highly ex
ited states. Regardingsemi
lassi
s, in 
ontrast, high quantum numbers are espe
ially favorable. As pointed outabove, the semi
lassi
al des
ription is further fa
ilitated by the broad line widths of thesesystems, whi
h generi
ally only allow the observation of the shell stru
ture. All this makesa semi
lassi
al approa
h to these stru
tures very promising.The following se
tions are devoted to the derivation of a semi
lassi
al linear responseformula for ele
tri
al transport. This will be applied to spe
i�
 systems in the subsequent
hapters.



5.2 Semi
lassi
al linear response 535.1 Semi
lassi
al linear responseThe 
al
ulation of transport properties for small external �elds is possible within the
ontext of linear response theory. This powerful tool relates the response of a system toa small external ex
itation to its ground state properties. Ri
hter and Mehlig [58, 120℄have derived a general semi
lassi
al treatment of dynami
 linear response fun
tions forballisti
 quantum systems at �nite frequen
y and �nite temperature. Their ansatz isnot only appli
able to ele
tri
al transport, but also to magneti
 properties or far-infraredabsorption of 
losed quantum dots. Here, the dis
ussion is restri
ted to ele
tri
al transportin stati
 external �elds. Please note that due to the linear response ansatz all nonlineartransport e�e
ts are beyond the s
ope of this work. Those e�e
ts 
an already o

ur forlow-ex
itation measurements (
f. Ref. [74℄).For absolutely 
lean systems the 
ondu
tivity is not �nite. In 
ontrast to the level density,whi
h 
an also be 
al
ulated for pure systems, transport properties are inseparably relatedto the disorder present in the system. The semi
lassi
al approximations therefore dependstrongly on the detailed properties of the s
atterers in the sample. This is why it is notpossible to give a uni�ed approa
h valid for all situations.The following se
tion will des
ribe the di�erent transport regimes, before Se
. 5.5 presentsa semi
lassi
al approximation for 
oherent ballisti
 transport. This is the regime that willbe relevant for the spe
i�
 systems 
onsidered later.5.2 Di�erent transport regimesThe transport properties depend on the mi
ros
opi
 s
attering pro
ess, the density of thes
atterers, their strengths and their distribution. A rough 
lassi�
ation of the di�erenttransport regimes is possible regarding the typi
al length s
ales involved:The system size a:This important datum for the dis
ussion of quantum os
illations may be ambivalentfor some systems.1The magneti
 length `B:A magneti
 �elds introdu
es an additional length s
ale `B = p�h=(eB), whi
h mayrepla
e the system size a in some problems. This 
ompli
ation will not be dis
ussedhere.The Fermi wavelength �F :�F = 2��h=p2m?E usually de�nes the smallest length s
ale. For two-dimensionalsystems this is equivalent to �F = p�=ns, where ns denotes the ele
tron densityper spin.The elasti
 mean-free path `:This is a quantum me
hani
al quantity, generally without 
lassi
al meaning. It isrelated to the total amplitude di�ra
ted by disorder [68℄ and to the single-parti
lerelaxation time [97℄. It is often given in terms of the total relaxation time � = `=vF .1For a long, narrow 
hannel it is a-priori not 
lear whether the length or the width is the 
hara
teristi
quantity. Something similar holds for antidot latti
es, where both the system size and the size of theelementary 
ell might be relevant.



54 Chapter 5: Semi
lassi
al TransportHere vF denotes the Fermi velo
ity vF = �hk=m?, whi
h in two dimensions 
an beexpressed as vF = 2�hp�ns=m?.The transport mean-free path `T :This quantity 
an be interpreted 
lassi
ally, indi
ating the length s
ale over whi
hthe ele
tron momentum is randomized. It is related to the momentum relaxationtime �p via `T = �pvF . Short-range impurity potentials lead to isotropi
 s
attering,and `T � `. For long-range impurity potentials the momentum before and after thes
attering pro
ess are 
orrelated, so that `T 
an signi�
antly ex
eed `.The phase 
oheren
e length `�:`� gives the length over whi
h the phase 
oheren
e of the wave fun
tion is lost. Thephase 
oheren
e length ex
eeds the mean-free path, as elasti
 s
attering preservesphase 
oheren
e. Only some inelasti
 s
attering pro
esses lead to �nite `�.Depending on these length s
ales, transport 
an roughly be divided into the followingregimes:ma
ros
opi
 (a� �F ) or mi
ros
opi
 (a >� �F ):a� �F is the regime of high quantum numbers, where the levels get 
loser in energy.2On
e the line width ex
eeds the mean level spa
ing, the quantization informationgradually disappears, eventually leading to 
lassi
ally smooth spe
tra.
lassi
al (a > `�) or 
oherent (a < `�):For a > `�, phase 
oheren
e is broken between two points in the system. Thusno 
orrelation of the wavefun
tions at these points is left, and the two parts of thesystem add 
lassi
ally (i. e. without interferen
e).di�usive (`T � a) or 
lean (`T � a):The regime (`T > a) is often referred to as the ballisti
 regime. There parti
les 
antraverse the system without randomizing their momentum.The distin
tion between di�usive and ballisti
 systems is easily visualized in the semi
las-si
al pi
ture. Fig. 5.1(A) depi
ts the di�usive situation, where a traje
tory is frequentlys
attered, and the motion is essentially a random walk. The periodi
 orbits in this systemare depi
ted in the lower part of Fig. 5.1(B). They depend on the individual lo
ations ofthe s
atterers. The assumption that, in analogy to the level density dis
ussed above, the
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*Figure 5.1: Di�usive (A, B) and ballisti
 transport regime (C, D). (B) and (D)depi
t some 
lassi
al 
losed orbits. These are relevant for quantum os
illations.2This holds for systems where the number of degrees of freedom minus the number of 
onstants ofmotion is larger than one.



5.3 The model for disorder 55system properties depend on the 
lassi
al periodi
 orbits already 
aptures the essentialphysi
s of these systems. The detailed stru
ture of the magneto
ondu
tan
e depends onthe mi
ros
opi
 distribution of the s
atterers, whi
h is unique for ea
h sample. This leadsto the \�ngerprint" 
hara
teristi
s of the magneto
ondu
tan
e of disordered samples.Weak lo
alization, another e�e
t in di�usive samples, 
an be understood as a 
onsequen
eof 
oherent ba
ks
attering: The 
entral me
hanism is that 
losed paths as in the upperpart of Fig. 5.1(B) 
an be followed in both dire
tions. Their 
ontributions thereforeinterfere 
onstru
tively. This enlarges the return probability of the parti
le, whi
h ishen
e weakly lo
alized. A magneti
 �eld breaks the time-reversal symmetry, so that thetwo orientations are no longer 
oherent. This explains why a magneti
 �eld destroys weaklo
alization. Detailed information about these and related di�usion-based e�e
ts 
an befound in Refs. [99, 90, 91℄.In the following 
oherent (a < l�), ballisti
 (lT > a), mesos
opi
 (1 � �F=a � 1)transport is 
onsidered. Fig. 5.1(C) sket
hes the ballisti
 
ase, where traje
tories arerarely s
attered. In this regime the periodi
 orbits (
.f. Fig. 5.1(D)), and thus the quantumos
illations, mainly depend on the 
on�nement of the system and not on the distributionof the s
atterers.The e�e
ts of disorder on the semi
lassi
al approximations have already been listed onpage 17. For the low impurity 
on
entrations of ballisti
 systems, periodi
 orbits as inFig. 5.1(B) 
an be negle
ted, and the 
oheren
e of degenerate families is hardly a�e
ted.The orbits whi
h 
ontribute in the ballisti
 regime are therefore those of the 
lean system.Disorder indu
es a �nite probability of s
attering out of a periodi
 traje
tory. This leadsto a redu
tion of the semi
lassi
al amplitudes.Note that in the ballisti
 regime the quantum os
illations are dominated by the 
on�ne-ment potential, i. e. depend on the fa
t that the system is �nite. Therefore quantumme
hani
al 
al
ulations in
luding impurity s
attering whi
h rely on the translational in-varian
e of an in�nite system 
annot be applied here.5.3 The model for disorderS
attering is, as already outlined in Se
. 3.1, introdu
ed by appropriate averages. For asingle, isolated system this is the average over the impurity 
onstellation. If ensembles ofsystems, like dot-arrays, are 
onsidered, this average also in
ludes system parameters likegeometry and Fermi energy.For an expli
it 
al
ulation, both the s
attering potential and the distribution of s
atter-ers have to be known. The problem of a realisti
 des
ription of these properties is not
ompletely settled so far. The s
attering potential depends strongly on the nature of thes
atterer, its distan
e to the 2DEG, and, for ionized impurities, the s
reening propertiesof the 2DEG. Modeling the distribution of s
atterers is also non-trivial. For high-mobility2DEG, s
attering at ionized donors is the dominant pro
ess. Their distribution does notonly depend on the growth pro
ess,3 but also on the 
ooling s
heme. The underlyingme
hanism is 
alled 
oulomb ordering. It applies to the generi
 
ase where only a part ofthe donors is ionized. While 
ooling down slowly, an energeti
ally favorable subgroup isgetting ionized. The ionized donors are hen
e preferably equally spa
ed. This introdu
es3The growth pro
ess is usually, but not generally believed to lead to randomly distributed donors.



56 Chapter 5: Semi
lassi
al Transport
orrelations in the positions of the s
atterers, even if the donors themselves are randomlydistributed [110, 113℄.The 
al
ulation of transport properties, espe
ially of line shapes and amplitudes, fromrealisti
 impurity potentials and distributions is 
urrently an area of a
tive resear
h (see,e. g., [60℄). As this work is not intended to 
ontribute to this area, impurity 
orrelatione�e
ts will be negle
ted in the following. A wide-spread model for un
orrelated impuritiesuses random gaussian potentialsV (r) =Xi=i N Vi2��2 exp"�12 �r �Ri� �2# ; (5.1)
hara
terized by an average strength V0 and a 
orrelation length �. Following this ansatz,Ri
hter [105℄ derived a semi
lassi
al approximation for the sus
eptibility. He �nds that theimpurities 
an be in
luded in the semi
lassi
al sus
eptibility by fa
tors F (L) damping theorbit amplitudes. Due to the di�erent averages involved, the results for individual systemsdi�er from those for ensembles. They also depend on the relative size of the 
orrelationlength �, the system dimension a, and the Fermi wavelength �F . In the 
ontext of thiswork isolated systems with �nite-range (�F < � < a) impurities will be 
onsidered. Forthose systems F (L) is given byF (L) = e�L=(2`) ; (5.2)with the elasti
 mean-free path `. For these samples the transport mean-free-path `T is
onsiderably larger than ` [105℄. Therefore a ballisti
 treatment of systems with a size
omparable to the elasti
 mean-free-path is still justi�ed.Please note that the ansatz of randomly distributed s
atterers is restri
ted to the �rstrepetition of 
lassi
al orbits. This 
omes about as the repetition of an orbit sees the sameimpurity 
onstellation as the primitive orbit. Therefore random impurity positions onthe sample are not random along the traje
tory. A re�ned dis
ussion as presented byRi
hter [105℄ shows that the higher repetitions of orbits are also damped exponentially,but with an exponent depending quadrati
ally on the repetition number.5.4 Finite temperatureJust as the in
lusion of s
attering, the 
onsideration of �nite temperatures in semi
lassi
allinear response formulae is not 
ompletely settled so far4. The intuitive approa
h to repla
ethe Æ fun
tions in the 
orresponding quantum me
hani
al expressions by Lorentzians withwidth 
Æ(E)! 1� 
E2 + 
2 (5.3)has been 
on�rmed by more involved 
al
ulations [80℄ and has been established as aquasi-standard [112℄. Sin
e a detailed dis
ussion of the mi
ros
opi
 me
hanism involvedin dissipation is beyond the s
ope of this work, this heuristi
 approa
h will be implemented.4For grand 
anoni
al systems, the approa
h of Se
t. 3.1 
an shown to be exa
t [17℄.



5.5 The semi
lassi
al Kubo formula 575.5 The semi
lassi
al Kubo formulaIn the ballisti
 regime the quantum os
illations are, as already pointed out, determinedby the sample boundaries, not by the impurity 
onstellation. This geometri
 e�e
t is ofspe
ial interest, as the geometry of the sample 
an be adapted in a wide range. Twodi�erent types of ballisti
 devi
es 
an be distinguished:The �rst are small stru
tures 
oupled to leads, whi
h are 
ompletely phase 
oherent.The 
urrent through these systems does not s
ale with the system size, so that only
ondu
tan
es, but no 
ondu
tivities 
an be de�ned. For the transport through thosesamples, a semi
lassi
al approximation of the Landauer-B�uttiker formalism is appropriate.The generi
 example for the se
ond 
lass of devi
es is a regular array with a latti
e 
onstantsmaller than the phase 
oheren
e length, and a total size ex
eeding `�. Then quantumos
illations stemming from interferen
e e�e
ts within elementary 
ells 
an be observed,but the elementary 
ells themselves add 
lassi
ally. Therefore the de�nition of spe
i�
quantities like 
ondu
tivities is justi�ed. For those systems, Kubo linear response theoryis the adapted des
ription.For the systems 
onsidered in this work, the Kubo formalism will provide the 
orre
tframework. Please note that the distin
tion between Kubo and Landauer does not re
e
ta physi
al di�eren
e: Quantum me
hani
ally, both approa
hes have been shown to beequivalent [12℄.The general idea how to obtain a semi
lassi
al version of the Kubo 
ondu
tivity is toexpress the quantum me
hani
al Kubo formula in terms of Green's fun
tions. After thein
lusion of �nite temperature and weak disorder by appropriate averages, the Green'sfun
tions are repla
ed by their semi
lassi
al approximation. Following this line, Ri
hterand Ha
kenbroi
h/von Oppen derived a semi
lassi
al expression for the os
illating partof the 
ondu
tivity tensor.5 They use approximation Eq. (5.2), whi
h is equivalent tothe assumption of an energy-independent s
attering time. Temperature is in
luded asindi
ated in Eq. (5.3). Vertex 
orre
tions, whi
h 
orrespond to orbits in
luding s
atteringevents (
.f. Fig. 5.1(B)), are negle
ted. Under these assumptions they �ndÆ�xx(EF ; B) = 2V e2h Xppo;n Cxx Rn(��)Fn(�s)jDet( eMn � 1)j 
os�nS�h � �n�2�Æ�xy(EF ; B) = 2V e2h Xppo;n�1e �S�B+ Cxy� Rn(��)Fn(�s)jDet( eMn � 1)j 
os�nS�h � �n�2� : (5.4)In these formulas the sum over the primitive periodi
 orbits ppo is separated from the sumover their repetitions n. All quantities ex
ept the Maslov indi
es � refer to the primitiveperiodi
 orbit.6 The temperature T is in
luded byRn(��) = nT0=��sinh(nT0=��) ; (5.5)with the temperature-related s
attering time �� = �h=(�kBT ). The impurities lead toan exponential suppression of longer orbits a

ording to Eq. (5.2). In the following an5The derivations of the authors are virtually identi
al, and the results were published simultaneously.Please note the (identi
al!) misprints in the expression for �xy in Refs. [63, 41℄. There, the a
tion of thetotal orbit instead of the primitive orbit shows up in �S=�B. The formulas in Refs. [105, 42℄ are 
orre
t.6The Maslov index for stable orbits is not proportional to the repetition number.



58 Chapter 5: Semi
lassi
al Transportapproximate expression for the damping term whi
h depends on the period of the orbitinstead of its lengths will be 
onvenient:Fn(�s) = e�n2T0=(2�s) : (5.6)The s
attering time �s = m��=e is extra
ted from the experimental mobility �. Thevelo
ity-velo
ity 
orrelation Cij of a primitive periodi
 orbit is �nally given byCij = Z 10 dt e�t=�s Z T00 d� vi(�) vj(t+ �) : (5.7)Apart from the prefa
tors and the velo
ity 
orrelation fun
tion (whi
h repla
es the periodof the orbit), the stru
ture of the tra
e formula Eq. (5.7) is identi
al to the Gutzwillerexpression for the level density Eq. (2.14).The semi
lassi
al approximation of the 
ondu
tivity tensor will be used to 
al
ulate ele
-tri
al transport properties of the free 2DEG in 
hapter 6 and of the 
hannel with antidotsin 
hapter 7. Prior to this, the basi
 formulas 
onne
ting � with the measured voltagesand 
urrents will be reviewed.5.6 Ele
tri
al transportWithin linear response, the lo
al ele
tri
al �eld ~E and the lo
al 
urrent density ~j arerelated via the 
ondu
tivity tensor � a

ording to~j = � ~E : (5.8)The inverse tensor � = ��1 is known as the resistivity. It 
onne
ts ~j and ~E by ~E = �~j,and is expli
itly given by� = 1�xx�yy � �xy�yx � �yy ��xy��yx �xx � : (5.9)For isotropi
 systems �xx = �yy and �yx = ��xy, so that Eq. (5.9) simpli�es to�xx = �xx�2xx + �2xy and �xy = ��xy�2xx + �2xy : (5.10)For the free ele
tron gas in high magneti
 �elds j�xyj � �xx. In this 
ase the hall resistivityand the hall 
ondu
tivity are, as expe
ted, inverse quantities: �xy � 1=�xy . The longi-tudinal 
ondu
tivity, however, is proportional to the longitudinal resistivity: �xx / �xx.This relation is somewhat 
ounterintuitive.For the usual hall-bar geometry, i. e. a ma
ros
opi
, homogeneous, re
tangular system withlength l and width w where a 
urrent I is drawn in x-dire
tion, Eq. (5.10) leads toUx = RlI and Uy = RhI ; (5.11)with the longitudinal resistan
e Rl := lw�xx and the hall resistan
e Rh := �xy. Pleasenote that for two-dimensional systems the hall resistivity and the hall resistan
e are iden-ti
al.


