
Chapter 5Semilassial TransportTransport properties are, in ontrast to the level density onsidered above, readilyaessible in experiment. This hapter gives a short introdution to the semilassi-al approximation of eletrial transport within the linear response formalism. Theformulas presented will be used in the subsequent hapters.
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52 Chapter 5: Semilassial TransportThe semilassial approximation of the level density has been suessfully applied to hy-drogen as well as to Rydberg states [92, 52℄ and to neutral helium [28℄. In all these ases,the experimental observables are emission or absorption lines. A theoretial desriptionhene has to resolve the individual energy levels of the system. This is feasible in a semi-lassial approah, but not the most favorable appliation of this method. For the requiredfull quantization, many periodi orbits have to be inluded in the trae formula. The ben-e�t from a semilassial approah is onsiderable larger for systems where the line widthsexeed the mean level spaing. In these situations only the shell struture is observed,whih usually depends only on a few orbits.Systems in this regime inlude nulei, lusters and nanostrutured devies { �nite fermionsystems with partile numbers of some 10 to a few 1000. For all these systems, semilassiallevel density alulations have been performed. Suh an analysis was presented for the�ssion barrier of nulei [19, 118℄ as well as for the shell struture of metal lusters inmagneti �elds [77℄ and their ground-state deformation [121, 122, 59℄. Apart from theseexamples, the appliation of the standard trae formula to experimental situations is verylimited, as the level density is rarely diretly observable. In some ases a lose relationto the measured quantity an be assumed. Suh an approah was used for the analysis ofthe mass distribution of sodium lusters [61℄ or the magnetoondutane of a mesosopiirular quantum dot [2℄.To extend the appliability of semilassial methods it is desirable to develop desriptionsfor other physial quantities than the level density. This has been done for exampleregarding the magneti suseptibility [96, 78℄, urrent osillations in I-V urves [114℄ orthe ondutane [63, 41℄.As already pointed out, nanostrutured semiondutor devies are extremely versatile sys-tems. Many parameters like size, geometry, eletron density or magneti �eld an be variedexperimentally, some even during measurement. This opens up tremendous new theoret-ial and experimental opportunities, as many of these parameters are beyond ontrol inmore \natural" systems like atoms and nulei. Most easily aessible to measurement areeletrial transport properties. This is also an area of great ommerial interest: The rapiddevelopments in semiondutor tehnology lead to ontinually dereasing feature sizes onmemory or logi iruits. The smallest strutures already approah the mesosopi sale.It is for these reasons, the diret experimental aess, the great variability of the devie,the large number of ontrollable parameters, and the ommerial relevane that muh ofthe work on nanostrutures deals with eletrial transport properties.A quantum mehanial desription of these systems is very demanding. The usually largenumber of eletrons involves the alulation of numerous highly exited states. Regardingsemilassis, in ontrast, high quantum numbers are espeially favorable. As pointed outabove, the semilassial desription is further failitated by the broad line widths of thesesystems, whih generially only allow the observation of the shell struture. All this makesa semilassial approah to these strutures very promising.The following setions are devoted to the derivation of a semilassial linear responseformula for eletrial transport. This will be applied to spei� systems in the subsequenthapters.



5.2 Semilassial linear response 535.1 Semilassial linear responseThe alulation of transport properties for small external �elds is possible within theontext of linear response theory. This powerful tool relates the response of a system toa small external exitation to its ground state properties. Rihter and Mehlig [58, 120℄have derived a general semilassial treatment of dynami linear response funtions forballisti quantum systems at �nite frequeny and �nite temperature. Their ansatz isnot only appliable to eletrial transport, but also to magneti properties or far-infraredabsorption of losed quantum dots. Here, the disussion is restrited to eletrial transportin stati external �elds. Please note that due to the linear response ansatz all nonlineartransport e�ets are beyond the sope of this work. Those e�ets an already our forlow-exitation measurements (f. Ref. [74℄).For absolutely lean systems the ondutivity is not �nite. In ontrast to the level density,whih an also be alulated for pure systems, transport properties are inseparably relatedto the disorder present in the system. The semilassial approximations therefore dependstrongly on the detailed properties of the satterers in the sample. This is why it is notpossible to give a uni�ed approah valid for all situations.The following setion will desribe the di�erent transport regimes, before Se. 5.5 presentsa semilassial approximation for oherent ballisti transport. This is the regime that willbe relevant for the spei� systems onsidered later.5.2 Di�erent transport regimesThe transport properties depend on the mirosopi sattering proess, the density of thesatterers, their strengths and their distribution. A rough lassi�ation of the di�erenttransport regimes is possible regarding the typial length sales involved:The system size a:This important datum for the disussion of quantum osillations may be ambivalentfor some systems.1The magneti length `B:A magneti �elds introdues an additional length sale `B = p�h=(eB), whih mayreplae the system size a in some problems. This ompliation will not be disussedhere.The Fermi wavelength �F :�F = 2��h=p2m?E usually de�nes the smallest length sale. For two-dimensionalsystems this is equivalent to �F = p�=ns, where ns denotes the eletron densityper spin.The elasti mean-free path `:This is a quantum mehanial quantity, generally without lassial meaning. It isrelated to the total amplitude di�rated by disorder [68℄ and to the single-partilerelaxation time [97℄. It is often given in terms of the total relaxation time � = `=vF .1For a long, narrow hannel it is a-priori not lear whether the length or the width is the harateristiquantity. Something similar holds for antidot latties, where both the system size and the size of theelementary ell might be relevant.



54 Chapter 5: Semilassial TransportHere vF denotes the Fermi veloity vF = �hk=m?, whih in two dimensions an beexpressed as vF = 2�hp�ns=m?.The transport mean-free path `T :This quantity an be interpreted lassially, indiating the length sale over whihthe eletron momentum is randomized. It is related to the momentum relaxationtime �p via `T = �pvF . Short-range impurity potentials lead to isotropi sattering,and `T � `. For long-range impurity potentials the momentum before and after thesattering proess are orrelated, so that `T an signi�antly exeed `.The phase oherene length `�:`� gives the length over whih the phase oherene of the wave funtion is lost. Thephase oherene length exeeds the mean-free path, as elasti sattering preservesphase oherene. Only some inelasti sattering proesses lead to �nite `�.Depending on these length sales, transport an roughly be divided into the followingregimes:marosopi (a� �F ) or mirosopi (a >� �F ):a� �F is the regime of high quantum numbers, where the levels get loser in energy.2One the line width exeeds the mean level spaing, the quantization informationgradually disappears, eventually leading to lassially smooth spetra.lassial (a > `�) or oherent (a < `�):For a > `�, phase oherene is broken between two points in the system. Thusno orrelation of the wavefuntions at these points is left, and the two parts of thesystem add lassially (i. e. without interferene).di�usive (`T � a) or lean (`T � a):The regime (`T > a) is often referred to as the ballisti regime. There partiles antraverse the system without randomizing their momentum.The distintion between di�usive and ballisti systems is easily visualized in the semilas-sial piture. Fig. 5.1(A) depits the di�usive situation, where a trajetory is frequentlysattered, and the motion is essentially a random walk. The periodi orbits in this systemare depited in the lower part of Fig. 5.1(B). They depend on the individual loations ofthe satterers. The assumption that, in analogy to the level density disussed above, the
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*Figure 5.1: Di�usive (A, B) and ballisti transport regime (C, D). (B) and (D)depit some lassial losed orbits. These are relevant for quantum osillations.2This holds for systems where the number of degrees of freedom minus the number of onstants ofmotion is larger than one.



5.3 The model for disorder 55system properties depend on the lassial periodi orbits already aptures the essentialphysis of these systems. The detailed struture of the magnetoondutane depends onthe mirosopi distribution of the satterers, whih is unique for eah sample. This leadsto the \�ngerprint" harateristis of the magnetoondutane of disordered samples.Weak loalization, another e�et in di�usive samples, an be understood as a onsequeneof oherent baksattering: The entral mehanism is that losed paths as in the upperpart of Fig. 5.1(B) an be followed in both diretions. Their ontributions thereforeinterfere onstrutively. This enlarges the return probability of the partile, whih ishene weakly loalized. A magneti �eld breaks the time-reversal symmetry, so that thetwo orientations are no longer oherent. This explains why a magneti �eld destroys weakloalization. Detailed information about these and related di�usion-based e�ets an befound in Refs. [99, 90, 91℄.In the following oherent (a < l�), ballisti (lT > a), mesosopi (1 � �F=a � 1)transport is onsidered. Fig. 5.1(C) skethes the ballisti ase, where trajetories arerarely sattered. In this regime the periodi orbits (.f. Fig. 5.1(D)), and thus the quantumosillations, mainly depend on the on�nement of the system and not on the distributionof the satterers.The e�ets of disorder on the semilassial approximations have already been listed onpage 17. For the low impurity onentrations of ballisti systems, periodi orbits as inFig. 5.1(B) an be negleted, and the oherene of degenerate families is hardly a�eted.The orbits whih ontribute in the ballisti regime are therefore those of the lean system.Disorder indues a �nite probability of sattering out of a periodi trajetory. This leadsto a redution of the semilassial amplitudes.Note that in the ballisti regime the quantum osillations are dominated by the on�ne-ment potential, i. e. depend on the fat that the system is �nite. Therefore quantummehanial alulations inluding impurity sattering whih rely on the translational in-variane of an in�nite system annot be applied here.5.3 The model for disorderSattering is, as already outlined in Se. 3.1, introdued by appropriate averages. For asingle, isolated system this is the average over the impurity onstellation. If ensembles ofsystems, like dot-arrays, are onsidered, this average also inludes system parameters likegeometry and Fermi energy.For an expliit alulation, both the sattering potential and the distribution of satter-ers have to be known. The problem of a realisti desription of these properties is notompletely settled so far. The sattering potential depends strongly on the nature of thesatterer, its distane to the 2DEG, and, for ionized impurities, the sreening propertiesof the 2DEG. Modeling the distribution of satterers is also non-trivial. For high-mobility2DEG, sattering at ionized donors is the dominant proess. Their distribution does notonly depend on the growth proess,3 but also on the ooling sheme. The underlyingmehanism is alled oulomb ordering. It applies to the generi ase where only a part ofthe donors is ionized. While ooling down slowly, an energetially favorable subgroup isgetting ionized. The ionized donors are hene preferably equally spaed. This introdues3The growth proess is usually, but not generally believed to lead to randomly distributed donors.



56 Chapter 5: Semilassial Transportorrelations in the positions of the satterers, even if the donors themselves are randomlydistributed [110, 113℄.The alulation of transport properties, espeially of line shapes and amplitudes, fromrealisti impurity potentials and distributions is urrently an area of ative researh (see,e. g., [60℄). As this work is not intended to ontribute to this area, impurity orrelatione�ets will be negleted in the following. A wide-spread model for unorrelated impuritiesuses random gaussian potentialsV (r) =Xi=i N Vi2��2 exp"�12 �r �Ri� �2# ; (5.1)haraterized by an average strength V0 and a orrelation length �. Following this ansatz,Rihter [105℄ derived a semilassial approximation for the suseptibility. He �nds that theimpurities an be inluded in the semilassial suseptibility by fators F (L) damping theorbit amplitudes. Due to the di�erent averages involved, the results for individual systemsdi�er from those for ensembles. They also depend on the relative size of the orrelationlength �, the system dimension a, and the Fermi wavelength �F . In the ontext of thiswork isolated systems with �nite-range (�F < � < a) impurities will be onsidered. Forthose systems F (L) is given byF (L) = e�L=(2`) ; (5.2)with the elasti mean-free path `. For these samples the transport mean-free-path `T isonsiderably larger than ` [105℄. Therefore a ballisti treatment of systems with a sizeomparable to the elasti mean-free-path is still justi�ed.Please note that the ansatz of randomly distributed satterers is restrited to the �rstrepetition of lassial orbits. This omes about as the repetition of an orbit sees the sameimpurity onstellation as the primitive orbit. Therefore random impurity positions onthe sample are not random along the trajetory. A re�ned disussion as presented byRihter [105℄ shows that the higher repetitions of orbits are also damped exponentially,but with an exponent depending quadratially on the repetition number.5.4 Finite temperatureJust as the inlusion of sattering, the onsideration of �nite temperatures in semilassiallinear response formulae is not ompletely settled so far4. The intuitive approah to replaethe Æ funtions in the orresponding quantum mehanial expressions by Lorentzians withwidth Æ(E)! 1� E2 + 2 (5.3)has been on�rmed by more involved alulations [80℄ and has been established as aquasi-standard [112℄. Sine a detailed disussion of the mirosopi mehanism involvedin dissipation is beyond the sope of this work, this heuristi approah will be implemented.4For grand anonial systems, the approah of Set. 3.1 an shown to be exat [17℄.



5.5 The semilassial Kubo formula 575.5 The semilassial Kubo formulaIn the ballisti regime the quantum osillations are, as already pointed out, determinedby the sample boundaries, not by the impurity onstellation. This geometri e�et is ofspeial interest, as the geometry of the sample an be adapted in a wide range. Twodi�erent types of ballisti devies an be distinguished:The �rst are small strutures oupled to leads, whih are ompletely phase oherent.The urrent through these systems does not sale with the system size, so that onlyondutanes, but no ondutivities an be de�ned. For the transport through thosesamples, a semilassial approximation of the Landauer-B�uttiker formalism is appropriate.The generi example for the seond lass of devies is a regular array with a lattie onstantsmaller than the phase oherene length, and a total size exeeding `�. Then quantumosillations stemming from interferene e�ets within elementary ells an be observed,but the elementary ells themselves add lassially. Therefore the de�nition of spei�quantities like ondutivities is justi�ed. For those systems, Kubo linear response theoryis the adapted desription.For the systems onsidered in this work, the Kubo formalism will provide the orretframework. Please note that the distintion between Kubo and Landauer does not reeta physial di�erene: Quantum mehanially, both approahes have been shown to beequivalent [12℄.The general idea how to obtain a semilassial version of the Kubo ondutivity is toexpress the quantum mehanial Kubo formula in terms of Green's funtions. After theinlusion of �nite temperature and weak disorder by appropriate averages, the Green'sfuntions are replaed by their semilassial approximation. Following this line, Rihterand Hakenbroih/von Oppen derived a semilassial expression for the osillating partof the ondutivity tensor.5 They use approximation Eq. (5.2), whih is equivalent tothe assumption of an energy-independent sattering time. Temperature is inluded asindiated in Eq. (5.3). Vertex orretions, whih orrespond to orbits inluding satteringevents (.f. Fig. 5.1(B)), are negleted. Under these assumptions they �ndÆ�xx(EF ; B) = 2V e2h Xppo;n Cxx Rn(��)Fn(�s)jDet( eMn � 1)j os�nS�h � �n�2�Æ�xy(EF ; B) = 2V e2h Xppo;n�1e �S�B+ Cxy� Rn(��)Fn(�s)jDet( eMn � 1)j os�nS�h � �n�2� : (5.4)In these formulas the sum over the primitive periodi orbits ppo is separated from the sumover their repetitions n. All quantities exept the Maslov indies � refer to the primitiveperiodi orbit.6 The temperature T is inluded byRn(��) = nT0=��sinh(nT0=��) ; (5.5)with the temperature-related sattering time �� = �h=(�kBT ). The impurities lead toan exponential suppression of longer orbits aording to Eq. (5.2). In the following an5The derivations of the authors are virtually idential, and the results were published simultaneously.Please note the (idential!) misprints in the expression for �xy in Refs. [63, 41℄. There, the ation of thetotal orbit instead of the primitive orbit shows up in �S=�B. The formulas in Refs. [105, 42℄ are orret.6The Maslov index for stable orbits is not proportional to the repetition number.



58 Chapter 5: Semilassial Transportapproximate expression for the damping term whih depends on the period of the orbitinstead of its lengths will be onvenient:Fn(�s) = e�n2T0=(2�s) : (5.6)The sattering time �s = m��=e is extrated from the experimental mobility �. Theveloity-veloity orrelation Cij of a primitive periodi orbit is �nally given byCij = Z 10 dt e�t=�s Z T00 d� vi(�) vj(t+ �) : (5.7)Apart from the prefators and the veloity orrelation funtion (whih replaes the periodof the orbit), the struture of the trae formula Eq. (5.7) is idential to the Gutzwillerexpression for the level density Eq. (2.14).The semilassial approximation of the ondutivity tensor will be used to alulate ele-trial transport properties of the free 2DEG in hapter 6 and of the hannel with antidotsin hapter 7. Prior to this, the basi formulas onneting � with the measured voltagesand urrents will be reviewed.5.6 Eletrial transportWithin linear response, the loal eletrial �eld ~E and the loal urrent density ~j arerelated via the ondutivity tensor � aording to~j = � ~E : (5.8)The inverse tensor � = ��1 is known as the resistivity. It onnets ~j and ~E by ~E = �~j,and is expliitly given by� = 1�xx�yy � �xy�yx � �yy ��xy��yx �xx � : (5.9)For isotropi systems �xx = �yy and �yx = ��xy, so that Eq. (5.9) simpli�es to�xx = �xx�2xx + �2xy and �xy = ��xy�2xx + �2xy : (5.10)For the free eletron gas in high magneti �elds j�xyj � �xx. In this ase the hall resistivityand the hall ondutivity are, as expeted, inverse quantities: �xy � 1=�xy . The longi-tudinal ondutivity, however, is proportional to the longitudinal resistivity: �xx / �xx.This relation is somewhat ounterintuitive.For the usual hall-bar geometry, i. e. a marosopi, homogeneous, retangular system withlength l and width w where a urrent I is drawn in x-diretion, Eq. (5.10) leads toUx = RlI and Uy = RhI ; (5.11)with the longitudinal resistane Rl := lw�xx and the hall resistane Rh := �xy. Pleasenote that for two-dimensional systems the hall resistivity and the hall resistane are iden-tial.


