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28 Chapter 4: The disk billiardThe tra
e formula is a relatively new te
hnique in mesos
opi
 physi
s. The experien
ewith the approa
h is therefore rather limited. The appli
ation of this method to a simple,well-known model system has three motivations: First, it is desirable to test the newansatz on a non-trivial, but well-known referen
e system to learn about the limitations ofthe method. So the se
ond goal 
onsidering a model system is to �nd out under whi
h
ir
umstan
es spe
i�
 
orre
tions in higher order of �h be
ome relevant. Finally, in 
aseswhere these 
orre
tions are not negligible, the 
hallenge is to improve the semi
lassi
alansatz, i.e. to in
lude the relevant 
orre
tions in a generalized tra
e formula.The semi
lassi
al des
ription of the disk billiard in homogeneous magneti
 �elds is there-fore worked out not although the problem 
an be solved exa
tly, but be
ause it 
an. Thethree goals formulated above will serve as a guiding line through the following se
tions.4.1 Exa
t quantum solutionThe disk billiard in homogeneous magneti
 �elds is integrable. The two 
onstants ofmotion are the angular momentum and the energy. In the following, normalized energieseE in units ofE0 = �h22mR2 (4.1)and normalized magneti
 �elds eB in units of �h=eR2 will be used. With the disk radiusR and the wavenumber k the normalized energy is given by peE = kR. The 
lassi
al
y
lotron radius is given by R
 = �hk=eB, and in normalized units by R
=R = kR= eB. Theexa
t solution for the eigenenergies was presented by Geerin
kx [31℄ and, using a di�erentapproa
h, by Klama et al. [49℄:eEnl = 2 eB ���nl + 1 + jlj2 + 12� ; (4.2)where the �nl are the zeros of the 
on
uent hypergeometri
 fun
tion 1F11F1 ��nl; 1 + jlj; eB2 ! = 0 : (4.3)Here n > 0 denotes the radial and l the angular-momentum quantum number. For B = 0the eigenvalue equation simpli�es to the well-known result eEnl = (jnl)2, where jnl are thezeros of the Bessel fun
tions Jl(jnl) = 0. For the details of the numeri
al evaluation, Irefer to my Diploma thesis [1℄. Fig. 4.1 shows the dependen
e of the eigenvalues eEnl oneB. One 
learly sees how with in
reasing magneti
 �eld the di�erent states 
ondense intothe Landau levels (dashed lines).4.2 The leading order in �h: Standard semi
lassi
sThe standard Gutzwiller approa
h [36, 37, 38, 39, 40℄ is limited to orbits whi
h are isolatedin phase spa
e. Therefore it 
annot be applied to the disk with its 
ontinuous rotational
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Figure 4.1: The quantum-me
hani
al eigenenergies of the 
ir
ular billiard in depen-den
e of the magneti
 �eld. The dashed lines 
orrespond to the four lowest Landaulevels.symmetry. Deriving a tra
e formula requires the extensions of Strutinisky and Magner [76℄or Creagh and Littlejohn [23℄. This has been done for the zero-�eld 
ase by Reimann etal. [2℄ and, independently, by Tatievski et al. [79℄. Equivalent results have been obtained byBalian and Blo
h [11℄. Von Oppen [123℄ followed the approa
h of Berry and Tabor [13℄,whi
h starts from the EBK quantization of the system [46℄. Via Poisson resummationand subsequent saddle point approximations he derived a tra
e formula equivalent to themodi�ed Gutzwiller approa
h. This result shows that EBK and the modi�ed Gutzwillerapproximation are identi
al in the leading order of �h. Sin
e the intermediate steps of the
al
ulation in
lude saddle-point approximations, the identity does not ne
essarily holdbeyond the leading order. In a previous work I was, however, able to show numeri
allywith high a

ura
y that the Gutzwiller-like tra
e formula reprodu
es exa
tly1 the single-parti
le energies of the EBK quantization. For details see Refs. [2, 1℄.For weak magneti
 �elds, the 
ir
ular billiard was treated using a perturbative approa
hby Boga
hek and Gogadze [15℄, Ullmo et al. [82℄ and Reimann et al. [62℄.4.2.1 Tra
e formula for arbitrarily strong �eldsThe generalization of the Gutzwiller tra
e formula to systems with 
ontinuous symmetriesby Creagh and Littlejohn is a 
onvenient starting point for the semi
lassi
al des
riptionof the level density of a 
ir
ular billiard in arbitrarily strong magneti
 �elds. For theappli
ation of this generalized tra
e formula, the periodi
 orbits have to be 
lassi�ed andtheir a
tions, amplitudes, and Maslov indi
es have to be 
al
ulated. This was the topi
 ofmy diploma thesis [1℄. Sin
e these results provide the basis for the subsequent 
al
ulations,they will be shortly reviewed in the following.1This has to be interpreted as a very fortunate 
ase, 
omparable to the harmoni
 os
illator. There all�h 
orre
tions vanish, and the semi
lassi
al approximation is therefore exa
t [18℄.



30 Chapter 4: The disk billiard4.2.1.1 Classi�
ation of the periodi
 orbitsThe 
lassi�
ation of the periodi
 orbits in the system is straightforward. In zero �eld, theperiodi
 orbits (PO) of a 
ir
ular billiard are equivalent to those in a three-dimensionalspheri
al 
avity. The 
omplete 
lassi�
ation of those has already been given by Balianand Blo
h [11℄. The only di�eren
e to the three-dimensional 
ase is that the orbits inthe disk billiard only have a one-dimensional degenera
y, 
orresponding to the rotationalsymmetry of the system. Ea
h family of degenerate orbits with a given a
tion 
an berepresented by a regular polygon. The �rst few polygons are shown in Fig. 4.2. These
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Figure 4.2: The
lassi
al periodi
 or-bits of the 
ir
u-lar billiard in zero�eld are the regu-lar polygons. They
an be 
lassi�ed with(v;w), where v isthe number of 
or-ners and w indi
ateshow often the traje
-tory winds aroundthe 
enter.orbit families are 
lassi�ed by � = (v; w), where v denotes the number of 
orners (verti
es),and w is the winding number, i. e., it 
ounts how often an orbit winds around the 
enterof the disk. With v � 2w > 2 (v; w 2 IN), all families of POs of the system in the absen
eof a magneti
 �eld are uniquely des
ribed by � = (v; w). Be
ause of the time-reversalsymmetry, all orbits ex
ept the diameter (v = 2w) have an additional dis
rete two-folddegenera
y, whi
h has to be a

ounted for in the tra
e formula.Swit
hing on the magneti
 �eld 
auses the 
lassi
al traje
tories to bend, the dire
tion ofthe 
urvature depending on the dire
tion of motion with respe
t to the magneti
 �eld.This entails a breaking of time-reversal symmetry. For weak �elds, the orbits 
an still be
lassi�ed by � if an additional index (�) is introdu
ed. This situation is shown in theupper row of diagrams in Fig. 4.3 for the orbit � = (4; 1). Up to a �eld strength where the
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Figure 4.3: A magneti
�eld breaks the time-reversalsymmetry, so that the or-bits are no longer indepen-dent of the dire
tion of mo-tion. Introdu
ing an addi-tional index �, the orbits
an be 
lassi�ed by (v;w)�,both in weak (R
 > R) andin strong (R
 < R) �elds.For strong �elds an addi-tional family of orbits o
-
urs. These are the 
y-
lotron orbits, whi
h do nottou
h the boundary.
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lassi
al 
y
lotron radius R
 equals the disk radius R, hen
eforth referred to as the weak-�eld regime, the orbits do not 
hange their topology and the 
lassi�
ation �� holds. Forthe strong-�eld regime with eB > kR, the stru
ture of the POs is di�erent. This situationis shown in the se
ond row of diagrams in Fig. 4.3. The �� orbits vary their shapes
ontinuously over the point R
 = R, but the topologies of the �+ orbits 
hange abruptly.However, sin
e there is a one-to-one 
orresponden
e between orbits for R
 >� R and forR
 <� R, �� still gives a 
omplete 
lassi�
ation of all boun
ing orbits, i. e., of orbits thatare re
e
ted at the boundary. For R
 < R, there are additional 
y
lotron orbits whi
h donot tou
h the boundary at all. They have to be in
luded additionally in the sum over allorbits in the tra
e formula. At �eld strengths where R
 � R �sin(�w=v), the (v; w)� orbitsno longer exist (see Fig. 4.4). They vanish pairwise in a tangent bifur
ations. This imposesFigure 4.4:At a magneti
 �eldstrength where R
 =R sin(� w=v), theorbits (v;w)� van-ish pairwise in tan-gent bifur
ations.  (v,w)+

  (v,w)
-

 R  > R sin(π⋅w/v) c  R  = R sin(π⋅w/v) c  R  < R sin(π⋅w/v) can additional restri
tion on the sum over (v; w). In
luding this �nally yields a 
omplete
lassi�
ation of all periodi
 orbits in the 
ir
ular billiard at arbitrary �eld strengths.4.2.1.2 The boun
ing orbitsThe a
tion of a 
losed orbit in a magneti
 �eld 
an be written as the sum of the kineti
part and the magneti
 
ux en
losed by the orbitS� = Z pdq = �hkL� � eBF� : (4.4)The en
losed areas F� of the periodi
 orbits dis
ussed above (
orre
tly 
ounting thoseareas that are en
losed several times, 
f. Fig. 4.5) as well as their geometri
al lengths L�Figure 4.5: Cal
ulat-ing the magneti
 
uxen
losed by an or-bit, the multiple en-
losed areas (darkergray) have to be 
or-re
tly a

ounted for. (3,1,n) (5,2,n) (7,3,n)
+ + +
an be 
al
ulated by elementary geometry. In terms of the geometri
al quantities R
; R; 
and � explained in Fig. 4.6 they are given byS�(E) = v�hkR
� ; (4.5)
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ϕ RFigure 4.6: The a
tions and amplitudes of the
lassi
al periodi
al orbits 
an be expressed in termsof the geometri
al quantities shown in this �gure.

A

ording to the tra
e formula Eq. (2.15),the orbit amplitudes in
lude an integralover the symmetry group. For the ro-tational U(1) symmetry of the disk thisintegral just gives 2�=v. The remainingfa
tors in the amplitude are the period ofthe orbit L=�hk, and the Ja
obian result-ing from the symmetry redu
tion dL=d	,where 	 = �2n�. All these quantities
an be 
al
ulated analyti
ally, resultingin A� = 1E0 1pRk� 1pv R
R r 
dsR �� ;�� = � � � 
 for (�+; R
 < R)
 otherwise ;(4:6)where 
; d; and s are the geometri
allengths sket
hed in Fig. 4.6. The depen-den
e of these geometri
al quantities on the 
lassi�
ation parameter �� and the 
y
lotronradius R
 is given by� = wv � ;
 = ar
sin� RR
 sin�� ;' = 8<: 
 � � + �=2 for (�+; R
 > R)�
 + � + �=2 for (�+; R
 < R)
 + � � �=2 for (��) ;
 = R 
os' ;s = qR
2 � R2 sin2� ;d = � js� R 
os�j for �+s+ R 
os� for �� : (4.7)4.2.1.3 Cy
lotron orbitsAs already mentioned above, a new 
lass of orbits o

urs for eB > kR. These are the
y
lotron orbits, whi
h do not tou
h the boundary at all (see Fig. 4.3). They form trans-lationally degenerate families, whereas the boun
ing orbits (v; w)� 
onsidered above are
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lassi
s 33degenerate with respe
t to rotations. For the translational 
ase, the symmetry redu
-tion 
an be performed dire
tly, without need for the general pro
edure of Creagh andLittlejohn. Therefore, the the phase-spa
e 
oordinates are transformed a

ording to�x := 1pjeBj �px + eB2 y� ; �x := �y +pjeBj x ;�y := 1pjeBj �py � eB2 x� ; �y := �x �pjeBj y : (4.8)
(X,Y)

(x,y)

(x,y)~ ~

R

RcFigure 4.7: The motion of a 
hargedparti
le in a homogeneous magneti
�eld 
an be expressed in the 
oordi-nates of the relative motion (~x; ~y) =jeBj�1=2(��y ; �x) and the 
oordinatesof the 
enter of gyration (X;Y ) =jeBj�1=2(�x;��y). The Hamiltonianis independent of (�x;�y); all orbitswith the 
enter (X;Y ) in the grayshaded area are degenerate.

�x and �y are 
anoni
ally 
onjugate variables, sin
e[�x;�y℄ = i�h. The same holds for �x and �y.Apart from the fa
tor pjeBj, (�x; �y) are the 
o-ordinates of the motion relative to the 
enter of gy-ration (�x;�y), as illustrated in Fig. 4.7. In these
oordinates the Hamiltonian readsH = eB2m (�2x + �2y) : (4:9)As expe
ted, H does not depend on the 
oordinatesof the 
enter of gyration. Be
ause the relative andthe 
enter-of-gyration 
oordinates 
ommute, i. e.,[�x; �x℄ = [�x; �y℄ = [�y; �x℄ = [�y; �y ℄ = 0, thedegenera
y of a 
y
lotron orbit is proportional tothe phase-spa
e volume V a

essible for (�x;�y).This 
an be dire
tly read o� Fig. 4.7 (shaded area).The degenera
y is therefore given byN = V2��h = ~B2 �1 � R
R �2 : (4:10)The Hamiltonian Eq. (4.9) is identi
al to that of a one-dimensional harmoni
 os
illator.Using its analyti
al tra
e formula,2 the 
ontribution of the 
y
lotron orbits to the os
il-lating part of the level density 
an be written asÆg
 = 12E0 �1 � R
R �2 1Xn=1 
os(nk�R
 � n�) : (4.11)Here n is the winding number around the 
enter of gyration. The frequen
y is againdetermined by the 
lassi
al a
tion along the orbit, whi
h in this 
ase isS = n � �hk � �R
 : (4.12)Note that here exa
tly half of the kineti
 
ontribution to the a
tion is 
an
eled by the 
uxterm.2The one dimensional harmoni
 os
illator is one of the few 
ases that 
an be treated exa
tly withinstandard POT [18℄.



34 Chapter 4: The disk billiard4.2.1.4 Additional phasesThe additional phases � in the tra
e formula (2.15) are dis
ussed in Se
. 4.3.2.1. There,the Maslov index � is found to be � = 3v for boun
ing orbits and � = 2 for 
y
lotronorbits. The additional phase of Æ ��=2 stemming from the symmetry redu
tion is given byÆ = � 0 for (�+; R
 < R)1 otherwise : (4.13)Now for all quantities of the tra
e formula analyti
al expressions have been derived. Insert-ing them in Eq. (2.15), the semi
lassi
al level density for the disk billiard in homogeneousmagneti
 �elds 
an be evaluated.4.2.2 Numeri
al evaluationThe in�nite tra
e sum Eq. 2.15 has to be trun
ated in a numeri
al evaluation. Theimpli
ations of this trun
ation have been dis
ussed in Se
. 3.4. To ensure the 
onvergen
eof the sum and the 
omparability with the quantum results as well as to 
ontrol thetrun
ation errors, the 
onsiderations of Se
. 3.2 will now be applied to the tra
e formulaof the disk billiard.As dis
ussed on page 20, the natural 
hoi
e for the generalized energy in billiard systemsis k. A

ording to Eq. (3.21) the quasiperiod is then given by the geometri
al orbit lengthL = vR
 ��2� � 2
 for (�+; R
 < R)2
 otherwise : (4.14)Note that for weak �elds (R
 > R) L is independent of the dire
tion of motion �.To 
ompute the tra
e formula, an appropriate window fun
tion F (L) has to be sele
ted.For this 
hoi
e two 
riteria are relevant: First, F (L) should be nonzero only in a �niterange of L, so that many terms in the tra
e formula are eliminated and the numeri
alevaluation is simpli�ed. Se
ond, the window fun
tion should have an analyti
al Fouriertransform to enable an easy and a

urate 
omparison with the quantum results. Either ofthese 
onditions is met by the usual Gaussian smoothing, where the orbits are suppressedwith in
reasing length L a

ording to expf�(L=L0)2g. In this work a triangular window isused instead, whi
h mat
hes both demands. In order to make the results 
omparable withthe usual Gaussian smoothing, the window fun
tion is 
hara
terized with a parameter ~
.It 
orresponds to the varian
e of a Gaussian smoothing expf�1=2(k=~
)2g with the samehalf-width.Sin
e the tra
e formula should be evaluated via Eq. (3.14), the 
omplian
e of 
onditionsEqs. (3.19) and (3.20) has to be 
he
ked. These depend on the behavior of the amplitudeswhi
h are plotted in Fig. 4.18. As already dis
ussed, the orbit amplitudes diverge at thebifur
ations, so that Eq. (3.20) is violated at these points. This problem will be treatedtogether with the in
lusion of the bifur
ations in Se
. 4.3.3. Ex
ept in the vi
inity ofbifur
ations, the 
onditions (3.19) and (3.20) are ful�lled, so that Eq. (3.14) is appli
able.For the 
y
lotron orbits dis
ussed in Se
. 4.2.1.3, G = n�2�R
 and A = (2E0)�1(1�R
=R)2.This amplitude is slowly varying in the whole energy range. For the 
y
lotron orbits,approximation (3.18) is therefore justi�ed for all eE and eB.Putting everything together, this establishes a numeri
al s
heme for the evaluation of thesemi
lassi
al tra
e formula for the 
ir
ular billiard.



4.3 The leading order in �h: Standard semi
lassi
s 354.2.3 Results of the tra
e formulaThe results of the tra
e formula for the disk billiard in homogeneous magneti
 �elds willonly be dis
ussed insofar as they are relevant for the present work. Further details 
an befound in my Diploma thesis [1℄ or in Ref. [4℄.For zero �eld, the tra
e formula leads to an exa
t quantization at the EBK eigenvalues [2℄.In the weak-�eld limit the tra
e formula 
an be approximated by repla
ing the amplitudesof Eq. (4.6) by their asymptoti
 values for eB ! 0 and expanding the a
tions of Eq. (4.5)up to �rst order in eB. This reprodu
es, as expe
ted, the perturbative results of Boga
heket al. [15℄ and Reimann et al. [62℄.The result for the shell stru
ture (i. e. the 
oarse-grained level density) in 
omparison tothe exa
t quantum me
hani
al result is displayed in Fig. 4.8. For R
 > R, the agreement
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Figure 4.8: The semi
lassi
al level density of the disk billiard (solid) 
ompared tothe equivalently smoothed quantum-me
hani
al result (dashed). The smoothing widthis ~
 = 0:35. Gray lines and the arrows indi
ate the positions of the �rst four Landaulevels. In weak �elds (R
 > R) the semi
lassi
al result is in ex
ellent agreement withthe exa
t solution, for strong �elds (R
 <� R) the agreement is not satisfa
tory.with the exa
t quantum me
hani
al result is ex
ellent. In the strong-�eld regime RC <�R, however, the agreement is not satisfa
tory. The positions of the Landau levels arereprodu
ed, but their degenera
y is overestimated in the semi
lassi
al approximation. Inthe extreme �eld limit (R
 � R) the Landau states dominate the level density. In thisregime the 
y
lotron orbits dominate, sin
e their degenera
y prefa
tor Eq. (4.10) growslinearly in B. As shown in Se
. 4.2.1.3, the 
y
lotron orbits 
an be analyti
ally transformedto a harmoni
 os
illator. Thus, the semi
lassi
al des
ription of these orbits is exa
t. Forextremely strong �elds, the tra
e formula is therefore again a good approximation.The same results have also been obtained for the full quantization of the system [1, 4℄.To summarize, both the shell stru
ture and the full quantization, in weak as well as inextremely strong �elds, are well approximated by the semi
lassi
al method. The regimeR
 <� R, however, is poorly reprodu
ed by the tra
e formula.



36 Chapter 4: The disk billiard4.3 Beyond the leading order: �h 
orre
tions4.3.1 The inherent �h problem in the disk billiardAs explained in the previous se
tion, a new 
lass of periodi
 orbits appears in strongmagneti
 �elds. These are the 
y
lotron orbits, whi
h exist only for eB > kR. Whereasthe boun
ing orbits have a one-dimensional rotational symmetry, the 
y
lotron orbits aretwo-dimensionally translationally degenerate. The appli
ation of Creagh's tra
e formulaEq. (2.15) leads to 
ontributions in �h�3=2 stemming from the boun
ing orbits. The 
y-
lotron orbits, however, have a prefa
tor �h�2 . Even though the tra
e formula is derivedas the leading-order 
ontribution in �h, its appli
ation to the disk billiard results in termsof di�erent orders in �h.The inherent �h problem of the disk billiard is that these di�erent powers in �h are indeedne
essary to des
ribe the level density of the system. The leading order in �h is givenby the 
ontributions of the 
y
lotron orbits. These des
ribe the Landau levels 
orre
tly,whi
h dominate the level density in the extreme strong �eld limit. At weak �elds, however,R
 > R and the tra
e formula only 
onsists of the boun
ing orbits.In the two limits where one order in �h is dominant, i. e. the extreme and the weak �eldlimit, the tra
e formula was seen to be a good approximation. In the strong �eld regime(R
 <� R) di�erent powers in �h be
ome relevant, and the semi
lassi
al des
ription is notsatisfa
tory (
f. Fig. 4.8). This observation is surprising, sin
e the transition betweenthe limiting 
ases is mainly governed by the smoothly varying degenera
y prefa
tor of the
y
lotron orbits. The origin of the dis
repan
y between the semi
lassi
al and the quantumresult in the strong �eld regime needs further investigation.Formally, the boun
ing orbits give rise to an �h 
orre
tion in this regime { but, as we havejust seen, they 
annot be negle
ted. This naturally rises the question whether other �h
orre
tions are also relevant for the semi
lassi
al des
ription of this system. The follow-ing se
tions sele
t various �h 
orre
tions from physi
al and mathemati
al arguments andexamine their in
uen
e. These investigations will �nally show that all relevant e�e
ts 
anbe des
ribed in a simple, intuitive pi
ture. More mathemati
ally motivated 
orre
tionswill be of negligible in
uen
e. This is very 
onvenient from an appli
ant's point of view,sin
e the ne
essary modi�
ations to the tra
e formula remain simple, and more involved �h
orre
tions are irrelevant for pra
ti
al appli
ations. A theorist, however, might be disap-pointed by the fa
t that all the elaborate lengthy formulas have so little in
uen
e in theend.4.3.2 Re
e
tion phasesThe 
al
ulation of 
orre
tions to the Maslov index is motivated by two observations: First,a 
lose look at the shell stru
ture in Fig. 4.8 as well as at the 
orresponding full quanti-zation data shows that the semi
lassi
al approximation overestimates the degenera
y ofthe Landau levels, and 
ompletely misses the levels slightly higher in energy. A simplehand-waving argument links this behavior to a boundary e�e
t: Quantum me
hani
ally, aparti
le moving on a 
y
lotron orbit will feel the boundary even if 
lassi
ally not tou
hingit. Parti
les on 
y
lotron orbits 
lose to the boundary thus feel an additional 
on�nement.This restri
tion to a smaller volume will lead to a higher energy. In this pi
ture, not allthe 
y
lotron orbits are degenerate. The orbits 
lose to the boundary no longer have the
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tions 37energy of the Landau level, but a slightly higher one. This 
orre
ts the observed defe
tsof the semi
lassi
al approximation. The boundary properties enter the standard tra
eformula only via the Maslov index, so that a 
orre
tion of � is indi
ated.The se
ond observation motivating a 
loser examination of the Maslov index 
an be illus-trated with the diameter orbit. It exists only in the weak-�eld regime and develops intoa 
y
lotron orbit at R
 = R. The a
tion and the period 
hange smoothly over this point,but the Maslov index does not: It is 4 for the boun
ing, and 2 for the 
y
lotron orbit. A
orre
tion to the Maslov index should remove this spurious jump.In my Diploma thesis [1℄, I suggested an �h-
orre
tion to the Maslov index, i. e. repla
ing itwith a more sophisti
ated quantity expli
itly depending on �h. This se
tion will summarizethe ansatz together with the main results.4.3.2.1 The Maslov indexThe origin of the Maslov index 
an most easily be understood in the one-dimensional
ase. As presented in more detail in Se
. 2.1, the semi
lassi
al approa
h approximates thewave fun
tions by plane waves with the lo
al wave number k(x) =p2m[E � V (x)℄. Thisapproximation obviously breaks down at the 
lassi
al turning points where E = V (x), sothat the wavelength diverges. Expanding the wave fun
tion around the 
lassi
al turningpoints and mat
hing them to the plane-wave solutions far from the turning points leadsto additional phases in the semi
lassi
al quantization. In the limit �h ! 0 these areindependent of the detailed shape of the potential. Ea
h re
e
tion at a soft3 turning pointgives a phase of ��=2, whereas ea
h re
e
tion at an in�nitely steep wall gives a phase of��. These phases (in units of �=2) are the Maslov indi
es.In the 
ase of the disk billiard, the Maslov index 
an be obtained by 
ounting the 
lassi
alturning points of the one-dimensional e�e
tive potential in the radial variable r. Forskipping orbits, the Maslov index per boun
e is 3, in
luding one soft re
e
tion at the
entrifugal barrier and one hard-wall re
e
tion. For the 
y
lotron orbits, the e�e
tivepotential is a one-dimensional harmoni
 os
illator (see Se
. 4.2.1.3) with two soft turningpoints, and thus their Maslov index per period is 2. In higher dimensions, the Maslov indexis less a

essible to intuition. It 
an be des
ribed as a topologi
al index 
hara
teristi
 foran orbit. Its 
al
ulation for two-dimensional systems is des
ribed in appendix A.2.3. Forhigher dimensions see e. g. Refs. [22, 66℄.4.3.2.2 Re
e
tion phasesFor �nite �h the additional phases stemming from 
lassi
al turning points depend on theshape of the potential. This 
an be easily understood 
onsidering a 
y
lotron orbit at adistan
e xw from the billiard boundary. Negle
ting the 
urvature of the boundary (whi
h
orresponds to the strong-�eld limit), the motion in the presen
e of the wall 
an be redu
edto an e�e
tive 1D motion just as presented in Se
. 4.2.1.3. This is shown in Fig. 4.9. Theupper row of diagrams shows the 2D motion, the lower row gives the redu
tion to theone-dimensional motion in an e�e
tive potential. Figure 4.9 (a) shows the unbounded
ase, in (b) the orbit is near the boundary, and (
, d) illustrate skipping orbits.3In this 
ontext \soft" means that the slopes of the potential at the 
lassi
al turning points are �nite.
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y
lotron orbit is equivalent to the motion in a one-dimensionalharmoni
 os
illator (a). Negle
ting its 
urvature, the billiard boundary 
an be imple-mented in the e�e
tive one-dimensional motion (b)-(d).A parti
le in the potential sket
hed in Fig. 4.9(b) is 
lassi
ally not in
uen
ed by theadditional wall, sin
e it will never tou
h it. Quantum me
hani
ally, however, the wavefun
tion enters the 
lassi
ally forbidden region and thus feels the boundary even for xw >R
. This leads to a smooth transition of the quantum-me
hani
al re
e
tion phase 'Rover xw = R
. The semi
lassi
al Maslov phase, in 
ontrast, is dis
ontinuous at thispoint. As explained in Se
. 4.3.2.1 above, it is �� for xw > R
 and �3=2� for xw <R
. The quantum me
hani
al boundary e�e
ts 
an be implemented in the semi
lassi
altra
e formula by repla
ing ��=2 by the re
e
tion phase 'R of the 
orresponding one-dimensional motion. This smooth version of the Maslov phase will also remove the former
lear separation between 
y
lotron orbits and skipping orbits. These two limiting 
asesare now 
ontinuously linked, with 'R ranging between �� and �3�=2. We will refer tothe orbits in the transition region, whi
h are 
lose to the boundary within �h, as to thegrazing orbits.In this approximation the 
al
ulation of the re
e
tion phases is redu
ed to the problem ofthe one-dimensional harmoni
 os
illator in an additional square-well potential. The ap-proa
h 
hosen in my Diploma thesis [1℄ was to integrate the quantum-me
hani
al problemnumeri
ally and 
al
ulate the re
e
tion phases 'R from the solutions. Alternatively tothis numeri
al approa
h, an analyti
al approximation of the re
e
tion phase is possible.For a linear potential, the S
hr�odinger equation 
an be solved analyti
ally. Mat
hing thesolutions with the boundary 
ondition yields an expression of the re
e
tion phases in termsof Airy fun
tions:'R = 8<: �2��4 + ar
tan hAi(X)Bi(X)i� for X � 0�2��4 + ar
tan hAi(�X)Bi(�X)i� 23 jXj2=3� for X < 0 : (4.15)Expanding the potential at the turning point to linear order, these re
e
tion phases 
anbe used for arbitrary potential shapes. In this approximation, X is given byX = �32 Z WT pjE � V (x)j dx�2=3 ; (4.16)
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tions 39with the 
lassi
al turning point T and the position of the hard wall W . For the harmoni
os
illator 
onsidered above, one �nds expli
itlyX = 8><>: h34peE � exw pex2w � 1 � ar
osh(exw) �i(2=3) for jexwj � 1�h34peE ��2 � jexwjpex2w � 1 � ar
sin(jexwj)�i(2=3) for jexwj < 1 ; (4.17)where exw := xw=R
. An equivalent approa
h to the re
e
tion phase was used in a di�erent
ontext by Isihara and Ebina [44℄.
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Figure 4.10: The re
e
tion phase 'R in dependen
e of the dis-tan
e of the 
enter of gyration from the boundary xw. The tran-sition from xw < R
 to xw > R
 is 
ontinuous and gets sharperfor in
reasing (kR)2= eB. In the limit (kR)2= eB !1, whi
h 
orre-sponds to the semi
lassi
al limit �h ! 0, the Maslov phase (thi
kline) is re
overed.
The 
orre
tions to the Maslovindex obtained from the nu-meri
al approa
h and theanalyti
 approximation ofthe re
e
tion phase areequivalent within the 
on-text of this work. Fig. 4.10shows the result of thequantum me
hani
al 
al-
ulation for the re
e
tionphase 'R. As expe
ted, thetransition from �� at xw �R
 to �3=2� at xw � R
is smooth. The transitiongets sharper if (kR)2= eB in-
reases. For (kR)2= ~B !1,whi
h 
orresponds to thesemi
lassi
al limit �h ! 0,the standard Maslov phase(thi
k line) is reprodu
ed. Fig. 4.10 shows that quantum 
orre
tions have the greatestin
uen
e on the grazing orbits (xw � R
) and on orbits with xw >� �R
. The latterare known as the whispering gallery orbits, as they move in a narrow region along theboundary.4.3.2.3 Comparison to the quantum-me
hani
al resultFig. 4.11 depi
ts the semi
lassi
al shell stru
ture 
al
ulated with re
e
tion phases in thewhole range from zero �eld to full Landau quantization (solid). The 
omparison with theexa
t quantum result (dashed) shows that the semi
lassi
al approximation is now validfor arbitrarily strong �elds, in 
ontrast to the standard tra
e formula result displayed inFig. 4.8. Espe
ially the degenera
ies of the Landau levels are now reprodu
ed 
orre
tly.This shows that the repla
ement of the Maslov index by the re
e
tion phase is an important
orre
tion in the intermediate strong �eld regime. The re
e
tion phase expli
itly dependson �h, so that the in
lusion of this term formally 
orresponds to a 
orre
tion in higher thanleading order in �h.Some bifur
ations of important orbits are marked with verti
al lines in Fig. 4.11. Thequality of the semi
lassi
al approximation is ex
ellent even at these points, where thesemi
lassi
al tra
e formula is expe
ted to diverge. This apparent 
ontradi
tion will beexplained in the following se
tion. There, the bifur
ations will be in
luded in the tra
e
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uen
e of the 
orresponding �h 
orre
tion will be analyzed for thevarious �eld regimes.
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3Figure 4.11: The semi
lassi
al 
oarse-grained (e
 � 0:35) level density of the disk billiardwith 
orre
ted re
e
tion phases (solid) 
ompared to the equivalently smoothed quantum-me
hani
al result (dashed). The agreement is ex
ellent in the whole range of energies,disk radii, and magneti
 �elds. The verti
al lines indi
ate the bifur
ation points of themost important orbits. The shaded regions are enlarged in the �gures below. The thi
kgray lines 
orrespond to the interpretation of the level density as given in Se
. 4.4.
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tions 414.3.3 Bifur
ationsIn the disk billiard, the orbits (v; w)� vanish pairwise with in
reasing magneti
 �eld (orde
reasing energy) in tangent bifur
ations (see Fig. 4.4). This type of bifur
ation wasalready introdu
ed in Se
. 2.4. Due to the 
ontinuous symmetry of the disk billiard, theintegration 
onsidered there has to be performed over the angular momentum L insteadof r, but apart from that the s
hemati
 behavior of Fig. 2.1 is dire
tly re
overed. Fig. 4.12shows the situation for the triangular4 orbits. The stationary points of S(L) in the �rstrow 
orrespond to the periodi
 orbits plotted below. Fig. 4.12(A) shows the generi

(A) (B) (C)

S
↑

S
↑

S
↑

L→ LmaxLmin Lmin Lmax Lmin LmaxL→ L→

LmaxLmin LmaxLmin LmaxLminFigure 4.12: �h 
orre
tions to the stationary phase approximation of the tra
e integralof the level density. Upper row: Classi
al a
tion S in dependen
e of the angularmomentum L (solid). Dashed lines give the quadrati
 approximations at the stationarypoints (arrows). Lower row: Classi
al orbits 
orresponding to the stationary pointsof S(L). (A) Generi
 Gutzwiller 
ase, (B) 
lose to a bifur
ation, (C) 
lose to theintegration limit: 
reeping orbits.situation, where the stationary points are well separated from ea
h other and from theintegration limits. There, the stationary phase approximation a

ording to Eq. (2.9) iswell justi�ed. Near a bifur
ation, the stationary points are in 
lose proximity. This isshown in Fig. 4.12(B). The situation 
orresponds exa
tly to the one dis
ussed in Se
. 2.4.There is was outlined that uniform approximations are the appropriate tool to over
omethe spurious divergen
ies of the standard Gutzwiller approa
h at the bifur
ation points.Applying the uniform approximation for tangent bifur
ations Eqs. (B.7, B.8) to the diskbilliard, a modi�ed tra
e formula whi
h in
orporates all bifur
ations 
an be derived. Thistra
e formula readsÆg = 1��h X�=(v;w)D� [aAi(�) 
os(�) + bAi0(�) sin(�)℄ : (4.18)4Note that S(L) = S(L;�), i. e. the fun
tional dependen
e of S on L, depends on the type of orbit.
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os�rR
 sin�vsa = �32v ����R
R e
 � s sin�R
 ����+ 3�(��+ � ���)8 �1=6b = 1a � sR 
os(�) � 2e
� �� = � +a4 for sin� > R
=R�a4 else� = v�R
R �2 + RR
 sin(2�)2 � + �(�+� + ��� )4e
 = � a
os(R sin(�)=R
) for sin� > R
=Ra
osh(R sin(�)=R
) else :For the reasons mentioned in Se
. 3.4, again the smoothed level density is 
onsideredin the numeri
al evaluation. The implementation of the smoothing in the tra
e formularequires spe
ial 
are, as the amplitude fa
tors of Eq. (4.18) are os
illating fun
tions. Thepro
edure how to deal with this 
ompli
ation is dis
ussed in Se
. 3.3.1. The result of theuniform approximation, together with the in
uen
e of the smoothing s
heme, is examinedin Fig. 4.13. There the 
ontributions of the � = (4; 1)� orbits to the os
illating part of
32 33 34 35 36 37 kR→

δg
→ (A)

(B)

(C)

δg
→

δg
→Figure 4.13: The in
uen
e of the smoothing s
heme on the uniform approximation.All data 
orrespond to the 
ontributions of the � = (4; 1)� orbits to the semi
lassi
allevel density for eB = 50 and e
 � 0:21. The dashed lines in (A-C) give the uniformresult together with the exa
t implementation of smoothing a

ording to Se
. 3.3.1.The solid lines show (A) Gutzwiller result; (B) naive implementation of the smoothing,assuming slowly varying amplitudes; (C) improved ansatz as explained in the maintext.the level density are plotted for eB = 50 and ~
 � 0:21. In Fig. 4.13(A), the solid line givesthe result of the Gutzwiller tra
e formula, with smoothing a

ording to Eq. (3.14). The
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hara
teristi
 divergen
e at the bifur
ation point 
an 
learly be seen. For eB <� 35:36 the(4; 1)� orbits 
lassi
ally do no longer exist, so that their 
ontribution to the Gutzwillertra
e formula is zero. The uniform approximation Eq. (4.18) with smoothing a

ording toEq. (3.29) is illustrated by the dashed lines in (A-C). This ansatz interpolates smoothlyover the bifur
ation. Far on the real side of the bifur
ation, i. e. the side where the orbits
lassi
ally exist, the uniform approximation reprodu
es, as expe
ted, the Gutzwiller result.On the 
omplex side, the uniform approximation in
ludes 
ontributions of ghost orbits.These are damped exponentially. The detailed dis
ussion of the e�e
ts of the bifur
ationson the level density is postponed until the in
uen
e of the smoothing s
heme on theuniform result is examined.In (B), the 
orre
t smoothing s
heme (dashed) is 
ompared to the naive appli
ationof Eq. (3.14). This ansatz 
orresponds to the approximation of the Airy fun
tions inEq. (4.18) as 
onstants. Ex
ept for the vi
inity of the bifur
ation, this approa
h fails
ompletely. This is easily understood looking at the formula for the uniform treatment ofthe tangent bifur
ation Eqs. (B.7, B.8). Applying the smoothing s
heme of Eq. (3.14) tothis expression, the damping depends on the average �S=�E of the two orbits. This doesnot 
onverge to the 
orre
t limit far from the bifur
ation, whi
h is given by the Gutzwillerexpression. There the damping is given in terms of the individual orbit frequen
ies. The
orre
t asymptoti
 behavior on the real side 
an be imposed by interpreting the dampingterms as parts of the semi
lassi
al amplitudes, thus in
luding them in the sum and dif-feren
e terms of the amplitudes in Eqs. (B.7, B.8). This approa
h, however, is restri
tedto the real side, sin
e on the 
omplex side the a
tions are imaginary. This results in 
om-plex arguments for the window fun
tion, whi
h is not 
overed by the smoothing s
hemeof Se
. 3.2. In Fig. 4.13(C), this modi�ed smoothing s
heme (solid) is 
ompared withthe exa
t implementation a

ording to Eq. (3.29) (dashed). On the real side this simpleapproa
h leads to a

eptable results. The di�eren
e to the exa
t in
lusion of smoothingon the 
omplex side of the bifur
ation, however, is not negligible.In 
on
lusion, Fig. 4.13 shows that the 
orre
t implementation of smoothing is 
ru
ialwhen 
onsidering bifur
ations in the tra
e formula. It leads to signi�
ant 
orre
tions tothe standard s
hemes.Now as the e�e
t of the smoothing s
heme has been examined, the in
uen
e of the bi-fur
ations on the level density should be 
onsidered. In Fig. 4.14(A), on
e again the
ontribution of the (4; 1)� orbits to the level density with (dashed) and without (solid)uniform approximation is plotted. The large mismat
h 
on�rms that negle
ting the bi-fur
ation results in a wrong 
ontribution of a single orbit to the tra
e formula. The totallevel density, however, is not mu
h a�e
ted. This is shown in (B, D) for two smoothingwidths. Broad smoothing leads to a small number of orbits whi
h 
ontribute to the tra
esum. Sin
e the bifur
ation points of these orbits do not 
oin
ide, the other orbits partiallymask the e�e
t of a bifur
ation (B). For narrow smoothing (D) more orbits 
ontribute tothe tra
e formula, and the net e�e
t of the bifur
ations further de
reases. Even the widthsof the poles at the divergen
ies get less wide when more orbits are in
luded. This e�e
tis due to higher repetitions of the bifur
ating orbits. These bifur
ate at the same pointsas the primitive orbits. Fig. 4.14 indi
ates that the e�e
ts of the di�erent bifur
ations
ompensate to a great extent.Although a �ner resolution leads to a larger number of bifur
ations in
luded in the tra
eformula (illustrated by verti
al lines in Fig. 4.14(C)), their net e�e
t de
reases. The shellstru
ture is therefore more a�e
ted by the �h 
orre
tions than the full quantization data.For extremely broad smoothing, however, the e�e
t of the bifur
ations also de
reases. This



44 Chapter 4: The disk billiard

kR→

kR→

δg
→

 
(A)

(B)

(C)

(D)

32 33 34 35 36 37

34.5 35 35.5 36

δg
→

 
δg

→
 Figure 4.14: Comparison between the standard tra
e formula (solid) and the uniformapproximation (dashed) for eB = 50. (A) shows the 
ontribution of the orbits (4; 1)�,(B) and (D) give the level density with smoothing widths of e
 � 0:21 and 0:012 in kR.The verti
al lines (C) indi
ate the positions of the bifur
ations of the orbits in
ludedin the 
al
ulation of (D).is due to the properties of the periodi
 orbits in the disk billiard: At the bifur
ation point,the quasiperiod (i. e. the geometri
al orbit length) is given by (
f. Eq. (4.14))Lbif = Rv� sin (�w=v) � R�2 : (4.19)The approximation on the r.h.s. is justi�ed for all orbits ex
ept the diameter (where Lbif =2R�), sin
e for strong smoothing only the orbits with w = 1 are relevant. Smoothingwidths equivalent to an 
ut-o� length Lmax � R�2w therefore lead to a strong dampingof the 
ontributions from bifur
ations. A 
ut-o� length Lmax < R�2w suppresses thebifur
ations 
ompletely.5 This is the reason why in Fig. 4.11 the expe
ted divergen
ies atthe bifur
ations 
an not be seen.The maximum e�e
t of the bifur
ations on the level density should therefore be observedfor medium strong smoothing. This situation is plotted in Fig. 4.15, where the length
uto� of the triangular window fun
tion was taken to be Lmax = 12R, 
orresponding toa smoothing width of e
 � 0:195. The dashed lines give, just as in Fig. 4.11, the exa
tquantum result with equivalent smoothing. It is 
ompared to the standard Gutzwillerapproa
h in (A, C) and to the uniform approximation in (B, D). Even for this situation,where the in
uen
e of the bifur
ations is maximal, the uniform approximation only leadsto marginally better results than the standard tra
e formula.In 
on
lusion, the in
uen
e of the bifur
ations is negligible for all spe
tral resolutions fromthe shell stru
ture up to full quantization. Fig. 4.11 illustrates that the 
ontributions are5This stri
tly holds only for window fun
tions with F (L) = 0 8 L > Lmax, as for the triangular windowfun
tion used here.
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kR→Figure 4.15: The in
uen
e of the bifur
ations. Dashed: exa
t quantum result foreB = 50, e
 � 0:195. Solid lines 
orrespond to the standard Gutzwiller formula in (A,C) and to the uniform approximation in (B, D). The �h 
orre
tion from the bifur
ationsis small and strongly lo
alized at the bifur
ation points.damped out for large smoothing. For intermediate strong smoothing, as presented inFig. 4.15, the uniform approximation slightly improves the semi
lassi
al level density.The e�e
t, however, is lo
alized in a narrow region around the bifur
ations and hardlyrelevant in size. For higher resolution spe
tra, Fig. 4.13 shows that the 
ontributions ofthe bifur
ations mostly 
an
el. The widths of the divergen
ies are be
oming smaller, andtheir net e�e
t further de
reases. The bifur
ations therefore do not give rise to a relevant�h 
orre
tion of the semi
lassi
al level density, even though they lead to divergen
ies of thetra
e formula. It should be noted that the �h 
orre
tion from the bifur
ations is 
omparablein size with the 
orre
tion stemming from the 
orre
t implementation of smoothing. Itis therefore not reasonable to in
lude the uniform approximation without adapting thesmoothing s
heme.4.3.4 GrazingThe me
hanism whi
h ne
essitated the implementation of the uniform approximation inthe last se
tion was that the �nal stationary phase approximation in the derivation of thetra
e formula for the disk billiard failed 
lose to bifur
ations points. Fig. 4.12, whi
h plotsthe dependen
e of the a
tion S on the angular momentum L of the triangular orbit, showsthat another 
orre
tion might be relevant in this step.In Fig. 4.12(A) the stationary points, whi
h 
orrespond to the periodi
 orbits sket
hed be-low, are well separated both from ea
h other and from the integration limits. Fig. 4.12(C)illustrates the 
ase where the �+ orbit approa
hes the maximum angular momentum. For
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h 
reep along the billiard boundary, one integration limit 
oin
ides with thestationary point. The 
ontributions of these paths to the tra
e sum are expe
ted to be halfthe value of the original formula. These 
orre
tions apply for orbits 
lose to the boundary,so that they are 
alled grazing 
orre
tions. At eB = kR, i. e. for R
 = R, this 
orre
tionapplies to all �+ orbits simultaneously6. For this magneti
 �eld strength the e�e
t shouldtherefore be most pronoun
ed.The grazing 
orre
tion 
an be in
luded in the tra
e formula by in
orporating the �niteintegration limits. This leads to Fresnel type of integral instead of the Gaussian integralso

urring for the un
onstraint integration a

ording to Eq. (2.9). The 
orrespondingmodi�
ation of the tra
e formula for the disk billiard readsÆg = 1��hIm24X� A�B�ei� S��h ��� �2 �35 : (4.20)The only 
hanges to the original expression are the fa
tors B� , whi
h repla
e the additionalphases Æ in Eq. (2.15). These 
omplex fa
tors are de�ned asB� = X�=�u;�o 2�1=2 [C(�) + i�S(�)℄ : (4.21)For �+ orbits and R
 < R the 
oeÆ
ient � = �1, otherwise � = +1. The �ul aredetermined by the upper and lower integration limit, respe
tively:�ul =rkR� r 2vsR
 sin� ���� R
 �Rs� �R 
os� � � 
os����� : (4.22)The geometri
al quantities � and s are expli
itly given in Eq. (4.7) on page 32. � = +1for the �+, and � = �1 for the �� orbits. For 
onstant energy � is proportional to �h�1=2.Taking into a

ount the �nite integration limits therefore leads to 
orre
tions of the orderp�h beyond the leading order.The numeri
al evaluation of the tra
e formula again for
es the introdu
tion of a �nitesmoothing width. The Fresnel integrals C and S are os
illating fun
tions. Therefore the
ommon damping ansatz Eq. 3.18 
an not be used. The appropriate generalization isgiven in Se
. 3.3.1, and Eq. (3.29) applies to the situation 
onsidered here. Fig. 4.16 showsthe semi
lassi
al level density with (solid bla
k) and without (gray) grazing 
orre
tion.The simple smoothing whi
h assumes the Fresnel fa
tor to be a slowly varying fun
tionis given by the dotted line. The magneti
 �eld is eB = 50, so that R
 = R for kR = 50.The smoothing width is e
 � 0:33. The upper part of the �gure shows the 
ontributionsof the �+ orbits. The 
loseup in the inset 
on�rms that the simple smoothing (dashed)leads, indeed, to a 50% 
orre
tion of the Gutzwiller 
ontribution (gray) of the �+ orbits.In
luding the 
orre
t windowing (solid bla
k), however, mostly 
ompensates this e�e
t.Even more surprising is the behavior of the �� orbits. Although they are not as 
loseto the integration limit as the �+ orbits, their grazing 
orre
tion is nearly of the samemagnitude. The lower part of the diagram shows the total e�e
t of the grazing 
orre
tionin
luding all orbits. At eB = 50, whi
h 
orresponds to R
 = R where the grazing e�e
twas expe
ted to be most pronoun
ed, the in
uen
e of the 
orre
tion is small. The main6For R
 = R all �+ orbits 
oin
ide, building the whispering gallery.
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Figure 4.16: The e�e
t of the grazing 
orre
tion for eB = 50 and e
 � 0:33. Gray:without grazing 
orre
tion; dashed: grazing 
orre
tion with simple smoothing; solidbla
k: grazing 
orre
tion with 
orre
t smoothing. O�set for 
larity.e�e
t is not a variation of the amplitude, but a slight shift of the phase stemming fromthe 
omplex part of B�.This result shows that the �h 
orre
tion stemming from grazing 
an be negle
ted in thetra
e formula of the disk billiard. Please note that the e�e
t of the 
orre
t windowingis of the same order of magnitude as the 
orre
t implementation of the grazing e�e
t.As for the bifur
ation treatment above, this again shows that the te
hni
al detail of theimplementation of smoothing is of 
onsiderable importan
e.4.4 Semi
lassi
al interpretation of ÆgAn attra
tive feature of the semi
lassi
al approximation whi
h was not used until now isthe simple, intuitive pi
ture it gives. This should be exploited in the following to explainthe shell stru
ture of the disk billiard in terms of 
lassi
al quantities.A

ording to the tra
e formula Eq. (2.15), ea
h periodi
 orbit � 
ontributes an os
illatingterm to Æg. Its frequen
y is determined by the 
lassi
al a
tion S� along this path, whi
h
an be lo
ally approximated byS�(k) = S�(k0) + �hG�(k) (k � k0) ; (4.23)with the quasiperiod �hG. For billiard systems the quasiperiod is, a

ording to Eq. (3.21),identi
al to the geometri
al orbit length L given in Eq. (4.14). The amplitudes of theos
illating terms are A� F (G�), where F is the window fun
tion that depends on thedesired smoothing of the level density. Prior to the interpretation of the 
ontributions ofthe various orbits to Æg, the behavior of G�(= L�) and A� shall be dis
ussed.Fig. 4.17 shows the dependen
e of G on the ratio R
=R = kR= eB. Note that for R
 > R(see right diagram of Fig. 4.17) G is independent of the dire
tion of motion �, even if the
lassi
al a
tion depends on it. In strong �elds (R
 < R, left diagram) G is di�erent forthe \+" and the \{" orbits. Only at the bifur
ation points, where the two orbits 
oin
ide,
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Figure 4.17: The quasiperiods G of the most important orbits in dependen
e ofR
=R. For R
 > R, G is independent of the index �. The orbit bifur
ation points instrong �elds (verti
al lines) 
an 
learly be seen.they have identi
al G. A

ording to Eq. (4.19), the value of G at the bifur
ation points
onverges to w � �2R for strong �elds.In Fig. 4.18 the amplitudes of the orbits relative to the B = 0 values,A0� = sin3=2�pv ; (4.24)are plotted versus the ratio R
=R. The amplitude of the \{" orbit is always larger than thatof the 
orresponding \+" orbit. At R
 = R, where the \+" orbits 
hange the topology (seeFig. 4.3), their amplitudes are zero, so that these dis
ontinuities do not lead to artefa
tsin the level density. At the tangent bifur
ations dis
ussed above, the orbit amplitudesdiverge.Figure 4.18: The amplitudesof the dominating orbits � =(v; 1)� with v = 2; : : : ; 5 rela-tive to their B = 0 value. (Theamplitude of the 
y
lotron or-bit is in arbitrary units.) Atthe bifur
ation points R
 =sin(� v=w) indi
ated by ver-ti
al lines, the amplitudes di-verge. For R
 > R the am-plitudes of the boun
ing orbitsqui
kly approa
h their asymp-toti
 (zero-�eld) value. The in-set shows this 
onvergen
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Now the shell stru
ture shall be interpreted in these 
lassi
al terms, starting with the weak-�eld regime (R
 > R). The amplitudes for zero �eld given in Eq. (4.24) are proportional tov�1=2, favoring orbits with a small number of boun
es v. The dependen
e of the amplitudeson the magneti
 �eld as shown in Fig. 4.18 indi
ates that in the region where the \{" orbitsdi�er signi�
antly from the \+" orbits, the latter are negligible. These e�e
ts7 togetherstrongly favor the (2; 1) and the (3; 1)� orbit. They end up with 
omparable amplitudes.From this pi
ture a pronoun
ed beating pattern from the interferen
e of the diameter andthe triangular orbit is expe
ted as the dominating feature of the level density. This beating7The G dependen
e of F (G) also slightly supports this e�e
t.
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al interpretation of Æg 49pattern is indeed observed (
f. Fig. 4.11). The analogous e�e
t in three dimensional metal
lusters is known as supershell os
illations [61℄.8 The semi
lassi
al des
ription furthermorepredi
ts that this beating will persist in homogeneous magneti
 �elds up to a strength ofeB = kR. This is in agreement with the �ndings in Fig. 4.11. The thi
k gray lines in theframes (1a) and (1b) 
orrespond to a fun
tion9sin(kG(1;2)) + sin(kG(1;3)�) = sin�k�G2 � sin�k �G2 � : (4.25)It 
orre
tly predi
ts the stru
ture of the level density in this regime.Approa
hing the �eld strength where R
 = R, all orbits 
hange G sharply to 2�R. Atthis point, the �+ orbits 
oin
ide. The amplitude of this 
olle
tive mode is small. The�� orbits di�er from ea
h other at R
 = R. The 
hange of S with varying B is, however,identi
al for all orbits, sin
e a

ording to Eq. (4.23) all boun
ing orbits have the samelengths for R
 = R. This implies that the variation with magneti
 �eld is 
oherent forall boun
ing orbits, although their absolute values of S are di�erent. The semi
lassi
alpi
ture therefore predi
ts that the beating behavior will disappear at R
 = R, leaving justa simple os
illation with the 
ommon frequen
y. In Fig. 4.11 this sudden stop of the beatat R
 = R 
an 
learly be seen. The gray line in frame 2 shows that the frequen
y of theremaining single os
illation is predi
ted 
orre
tly.In strong �elds, only 
y
lotron orbits and boun
ing orbits with a great number of boun
esv exist. The amplitudes of the latter are proportional to v�1=2, so that in the strong �eldlimit the 
y
lotron orbits are expe
ted to dominate the level density. The gray lines inframe 3 of Fig. 4.11 show the 
orresponding os
illating term,10 whi
h, indeed, reprodu
esthe main feature of the quantum-me
hani
al result (solid bla
k). The skipping orbits withgreatest amplitudes are those whi
h are 
lose to their bifur
ation points. All those orbitshave nearly the same value of G = w � �2R. Their 
ontributions should therefore interfere
onstru
tively, giving rise to small stru
tures in the level density of this period. Su
hstru
tures 
an indeed be observed in a higher-resolution spe
trum, and their spa
ing is
onsistent with this simple pi
ture.11 The e�e
t of the only relevant �h 
ontribution wasalready dis
ussed in Se
. 4.3.2. The re
e
tion phases remove the degenera
y of all 
y
lotronorbits, leading to slightly higher energies of the orbits 
lose to the billiard boundary. Thisleads to a redu
tion of the Landau peak heights and to an in
reased level density slightlyabove the Landau levels. This 
orre
tion is only relevant in the intermediate strong �eldregime R
 <� R.This analysis shows that the simple semi
lassi
al pi
ture using only the 
lassi
al propertiesof three periodi
 orbits is able to explain the main features of the quite 
ompli
atedbehavior of the level density12 for arbitrarily strong �elds.8In the 3D spheri
al 
avity, the beat is due to the interferen
e of the triangle and the square orbits (seeRef. [11℄).9The phases are, of 
ourse, adjusted.10For a simpler 
omparison, the amplitude is 
hosen to rise quadrati
ally, as indi
ated by Eq. (4.10).11For details see Refs. [1, 4℄.12Here the dependen
e of the level density on the energy was interpreted. For the dependen
e on themagneti
 �eld a 
ompletely analogous approa
h is possible.
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hapter, a semi
lassi
al approximation for the level density of the disk billiard inhomogeneous magneti
 �elds was derived. The agreement of the standard tra
e formulawith the exa
t quantum result is ex
ellent for small �elds as well as for extremely strong�elds, but not in the intermediate regime. This failure was suspe
ted to be due to �h
orre
tions to the tra
e formula. Three di�erent �h-
orre
tions have been analyzed.First a 
orre
tion to the Maslov index was 
onsidered. This exhibits a dis
ontinuity whenthe re
e
tion at the hard boundary is, with in
reasing �eld strength, repla
ed by thesoft turning point in the magneti
 potential. A one-dimensional approximation leads tore
e
tion phases whi
h interpolate smoothly between these limits. It was shown thatrepla
ing the Maslov indi
es by re
e
tion phases is of great importan
e in the strong �eldregime R
 <� R. This holds for the shell stru
ture as well as for full quantization.At bifur
ations, the se
ond-order approximation of the a
tion S around stationary pointsbreaks down, leading to spurious divergen
ies in the semi
lassi
al amplitudes. A uniformapproximation to higher order in S shows that at the tangent bifur
ation the 
ontributionto the tra
e formula is in
reased by a fa
tor �h1=6 [70℄. The in
lusion of this �h 
orre
tion isimportant when one 
onsiders the 
ontribution of individual orbits to the tra
e formula.The 
orre
tions, however, rapidly loose in
uen
e if either many orbits are in
luded (whi
hgenerally is the 
ase if a higher resolution of the spe
trum is required), or the smoothingis so broad as to suppress the bifur
ating orbits strongly. The main result of this 
onsid-eration is that the bifur
ations have the maximum in
uen
e on moderately 
oarse-grainedlevel densities. But even for this 
ase, the �h 
orre
tions due to the bifur
ations are onlymarginal.Finally the 
reeping 
orre
tion, formally o

urring due to �nite integration limits, wasshown to be 
ompletely negligible in the semi
lassi
al approximation | although on �rstsight it is expe
ted to be a 50% e�e
t. Both the implementation of bifur
ation and ofgrazing e�e
ts require a modi�
ation of the smoothing pro
edure. The 
orre
tions fromthe adapted smoothing are in both 
ases 
omparable to the magnitude of the �h 
orre
tionsthemselves.These 
onsiderations show that the only relevant 
orre
tion to the tra
e formula is givenby the re
e
tion phases. In
luding this, the semi
lassi
al tra
e formula for the leveldensity is a good approximation for arbitrarily strong �elds. It reprodu
es the exa
tquantum-me
hani
al result with a remarkably redu
ed numeri
al e�ort. For the quantum-me
hani
al 
al
ulation shown in Fig. 4.11, about 2500 eigenvalues had to be 
al
ulatedand numeri
ally smoothed for ea
h value of eB, whereas the semi
lassi
al result is obtainedsumming the 
ontributions of just 20 orbits.13The main features of the level density 
ould be explained in a simple pi
ture. The 
lassi-
al properties of three interfering orbits are suÆ
ient to explain the behavior of the leveldensity in arbitrary �eld strengths. In weak �elds the diameter together with the theinwards-
urved triangular orbit lead to a pronoun
ed beating pattern. For eB = kR all or-bits interfere 
onstru
tively, and in strong �elds the 
y
lotron orbits dominate. They leadto the Landau quantization. The degenera
y of the Landau levels is reprodu
ed 
orre
tlyimplementing the proximity e�e
t of the boundary via the refe
tion phase.13For R
 > R even 10 orbits are suÆ
ient.


