Chapter 4

The disk billiard

The disk billiard in homogeneous magnetic fields 1s used as a model system for semi-

classical approzimations. Its quantum mechanical level density can be calculated

analytically.

Therefore, a precise comparison of the semiclassical approach to the

exact result 1s possible. The influence of various h-corrections to the trace formula is

examined. With the help of the trace formula’s close relation to classical dynamaics it 1s

possible to give a simple, intuitive picture explaining all features of the level density.
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28 CHAPTER 4: THE DISK BILLIARD

The trace formula is a relatively new technique in mesoscopic physics. The experience
with the approach is therefore rather limited. The application of this method to a simple,
well-known model system has three motivations: First, it is desirable to test the new
ansatz on a non-trivial, but well-known reference system to learn about the limitations of
the method. So the second goal considering a model system is to find out under which
circumstances specific corrections in higher order of % become relevant. Finally, in cases
where these corrections are not negligible, the challenge is to improve the semiclassical
ansatz, i.e. to include the relevant corrections in a generalized trace formula.

The semiclassical description of the disk billiard in homogeneous magnetic fields is there-
fore worked out not although the problem can be solved exactly, but because it can. The
three goals formulated above will serve as a guiding line through the following sections.

4.1 Exact quantum solution

The disk billiard in homogeneous magnetic fields is integrable. The two constants of
motion are the angular momentum and the energy. In the following, normalized energies
FE in units of

K2

T oOmR?

E, (4.1)

and normalized magnetic fields B in units of hi/eR? will be used. With the disk radius
R and the wavenumber k the normalized energy is given by \/E = kR. The classical
cyclotron radius is given by R, = hk/eB, and in normalized units by R./R = kR/B. The

exact solution for the eigenenergies was presented by Geerinckx [31] and, using a different
approach, by Klama et al. [49]:

~ ~ 14|l 1
B, =28 (a,ﬁ%Jﬁ) 1 (4.2)

where the «,,; are the zeros of the confluent hypergeometric function 1 F;

B
111 <—C¥nl§ L+ [l]; 5) =0. (4.3)

Here n > 0 denotes the radial and [ the angular-momentum quantum number. For B = 0
the eigenvalue equation simplifies to the well-known result Enl = (jnu1)?, where j,,; are the
zeros of the Bessel functions Ji(j,;) = 0. For the details of the numerical evaluation, I
refer to my Diploma thesis [1]. Fig. 4.1 shows the dependence of the eigenvalues E,; on
B. One clearly sees how with increasing magnetic field the different states condense into
the Landau levels (dashed lines).

4.2 The leading order in A: Standard semiclassics

The standard Gutzwiller approach [36, 37, 38, 39, 40] is limited to orbits which are isolated
in phase space. Therefore it cannot be applied to the disk with its continuous rotational
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Figure 4.1: The quantum-mechanical eigenenergies of the circular billiard in depen-
dence of the magnetic field. The dashed lines correspond to the four lowest Landau
levels.

symmetry. Deriving a trace formula requires the extensions of Strutinisky and Magner [76]
or Creagh and Littlejohn [23]. This has been done for the zero-field case by Reimann et
al. [2] and, independently, by Tatievski et al. [79]. Equivalent results have been obtained by
Balian and Bloch [11]. Von Oppen [123] followed the approach of Berry and Tabor [13],
which starts from the EBK quantization of the system [46]. Via Poisson resummation
and subsequent saddle point approximations he derived a trace formula equivalent to the
modified Gutzwiller approach. This result shows that EBK and the modified Gutzwiller
approximation are identical in the leading order of k. Since the intermediate steps of the
calculation include saddle-point approximations, the identity does not necessarily hold
beyond the leading order. In a previous work I was, however, able to show numerically
with high accuracy that the Gutzwiller-like trace formula reproduces exactly® the single-
particle energies of the EBK quantization. For details see Refs. [2, 1].

For weak magnetic fields, the circular billiard was treated using a perturbative approach
by Bogachek and Gogadze [15], Ullmo et al. [82] and Reimann et al. [62].

4.2.1 Trace formula for arbitrarily strong fields

The generalization of the Gutzwiller trace formula to systems with continuous symmetries
by Creagh and Littlejohn is a convenient starting point for the semiclassical description
of the level density of a circular billiard in arbitrarily strong magnetic fields. For the
application of this generalized trace formula, the periodic orbits have to be classified and
their actions, amplitudes, and Maslov indices have to be calculated. This was the topic of
my diploma thesis [1]. Since these results provide the basis for the subsequent calculations,
they will be shortly reviewed in the following.

!This has to be interpreted as a very fortunate case, comparable to the harmonic oscillator. There all
h corrections vanish, and the semiclassical approximation is therefore exact [18].
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4.2.1.1 Classification of the periodic orbits

The classification of the periodic orbits in the system is straightforward. In zero field, the
periodic orbits (PO) of a circular billiard are equivalent to those in a three-dimensional
spherical cavity. The complete classification of those has already been given by Balian
and Bloch [11]. The only difference to the three-dimensional case is that the orbits in
the disk billiard only have a one-dimensional degeneracy, corresponding to the rotational
symmetry of the system. FEach family of degenerate orbits with a given action can be
represented by a regular polygon. The first few polygons are shown in Fig. 4.2. These

Figure 4.2:  The
classical periodic or-
Y bits of the circu-
lar billvard wn zero

field are the regu-
2,1 G.D 4.1) (.1 lar polygons. They

can be classified with

(v,w), where v is
the number of cor-
***  ners and w indicates
how often the trajec-

tory winds around

4.2) (5,2) (6,2) (1,2) the center.

orbit families are classified by § = (v, w), where v denotes the number of corners (vertices),
and w is the winding number, i.e., it counts how often an orbit winds around the center
of the disk. With v > 2w > 2 (v,w € IN), all families of POs of the system in the absence
of a magnetic field are uniquely described by 8 = (v,w). Because of the time-reversal
symmetry, all orbits except the diameter (v = 2w) have an additional discrete two-fold
degeneracy, which has to be accounted for in the trace formula.

Switching on the magnetic field causes the classical trajectories to bend, the direction of
the curvature depending on the direction of motion with respect to the magnetic field.
This entails a breaking of time-reversal symmetry. For weak fields, the orbits can still be
classified by g if an additional index (+) is introduced. This situation is shown in the
upper row of diagrams in Fig. 4.3 for the orbit 5 = (4,1). Up to a field strength where the

Figure 4.3: A magnetic
field breaks the time-reversal
symmetry, so that the or-
bits are no longer indepen-
dent of the direction of mo-
tion. Introducing an addi-
tional index +, the orbits
can be classified by (v,w)F,
both in weak (R. > R) and
in strong (R. < R) fields.
For strong fields an addi-
tional family of orbits oc-
curs.  These are the cy-
clotron orbits, which do not
touch the boundary.




4.2 THE LEADING ORDER IN h: STANDARD SEMICLASSICS 31

classical cyclotron radius R, equals the disk radius R, henceforth referred to as the weak-
field regime, the orbits do not change their topology and the classification 5% holds. For
the strong-field regime with B> kR, the structure of the POs is different. This situation
is shown in the second row of diagrams in Fig. 4.3. The S~ orbits vary their shapes
continuously over the point R. = R, but the topologies of the 31 orbits change abruptly.
However, since there is a one-to-one correspondence between orbits for R. 2 R and for
R. S R, 5% still gives a complete classification of all bouncing orbits, i.e., of orbits that
are reflected at the boundary. For R. < R, there are additional cyclotron orbits which do
not touch the boundary at all. They have to be included additionally in the sum over all
orbits in the trace formula. At field strengths where R, < R-sin(mw/v), the (v, w)* orbits
no longer exist (see Fig. 4.4). They vanish pairwise in a tangent bifurcations. This imposes

Figure 4.4: (V,W)+

At a magnetic field

strength where R, = '
Rsin(m  w/v), the ‘\\
)E wan- < . (v,w)~

wsh pairwise in tan-

gent bifurcations. R.> R sin(mw-w/v) R.=R sin(mt-w/v) R <R sin(m-w/v)

orbits (v, w

an additional restriction on the sum over (v,w). Including this finally yields a complete
classification of all periodic orbits in the circular billiard at arbitrary field strengths.

4.2.1.2 The bouncing orbits

The action of a closed orbit in a magnetic field can be written as the sum of the kinetic
part and the magnetic flux enclosed by the orbit

e

Sz = /pdq = hkLs — eBFj . (4.4)

The enclosed areas Fj of the periodic orbits discussed above (correctly counting those
areas that are enclosed several times, cf. Fig. 4.5) as well as their geometrical lengths Lg

Figure 4.5: Calculat-
ing the magnetic fluz
enclosed by an or-
bit, the multiple en-
closed areas (darker
gray) have to be cor-

rectly accounted for. (3’1’n)+ (5,2,n)+ (7,3,n)+

can be calculated by elementary geometry. In terms of the geometrical quantities R., R, ~y
and © explained in Fig. 4.6 they are given by

S3(E) = whkR.n, (4.5)
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According to the trace formula Eq. (2.15),
the orbit amplitudes include an integral
over the symmetry group. For the ro-
tational U(1) symmetry of the disk this
integral just gives 27 /v. The remaining
factors in the amplitude are the period of
the orbit L/hk, and the Jacobian result-
ing from the symmetry reduction dL/d¥,
where ¥ = —2n0. All these quantities

can be calculated analytically, resulting
in

A, o L L 1R [
’ T EyVREnve R VsR™

{ 7 —~ for (BT,R. < R)

~y otherwise ,

g =

(4.6)

Figure 4.6:  The actions and amplitudes of the
classical periodical orbits can be expressed in terms

where ¢,d. and s are the geometrical
lengths sketched in Fig. 4.6. The depen-
dence of these geometrical quantities on the classification parameter % and the cyclotron

of the geometrical quantities shown in this figure.

radius R, is given by

w
O = —7,

v

R
v = arcsin (—sin@) ,
R

C

vy — © + «/2 for (BT,R.> R)

o = -y + © + 7/2 for (BT,R. < R)
Yy + 0 — =w/2 for (B)
¢ = Rcosyp,
s = \/RC2 — R2sin’ 0@
o e +
4 = |s — Rcos®| for /3_ (4.7)
s+ Rcos® for 7.

4.2.1.3 Cyclotron orbits

As already mentioned above, a new class of orbits occurs for B > kR. These are the

cyclotron orbits, which do not touch the boundary at all (see Fig. 4.3). They form trans-
lationally degenerate families, whereas the bouncing orbits (v, w)* considered above are
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degenerate with respect to rotations.

For the translational case, the symmetry reduc-

tion can be performed directly, without need for the general procedure of Creagh and

Littlejohn. Therefore, the the phase-space coordinates are transformed according to

! ( 4B ) I +
g = PeT™ 7Y ) x = Ty
V |eB]| 2
1 eB
Ty = —— | py— —2 ) , I, :=w, — \/|eB|y.
y e8] (Py 2 ) Y leB| y

II, and II, are canonically conjugate variables, since
[I,,II,] = ¢h. The same holds for w, and m,.
Apart from the factor \/|eB|, (7, m,) are the co-
ordinates of the motion relative to the center of gy-
ration (II,,TI,), as illustrated in Fig. 4.7. In these
coordinates the Hamiltonian reads

eB
H = —(71'3% —}-7‘(’2) .

o (4.9)

As expected, H does not depend on the coordinates
of the center of gyration. Because the relative and
the center-of-gyration coordinates commute, i.e.,
L, 7] = [, ] = [II,, 7] = [lI,,7,] = 0, the
degeneracy of a cyclotron orbit is proportional to
the phase-space volume V' accessible for (II,,II,).
This can be directly read off Fig. 4.7 (shaded area).
The degeneracy is therefore given by

1- %)2 : (4.10)

leB| =,

(4.8)

Figure 4.7:  The motion of a charged
particle in a homogeneous magnetic
field can be expressed in the coordi-
nates of the relative motion (%,§) =
leB|~'/2(—7,,7,) and the coordinates
of the center of gyration (X,Y) =
|cB|71/2(Hrq—Hy). The Hamailtonian
is independent of (I1g,11y); all orbits
with the center (X.Y) in the gray
shaded area are degenerate.

The Hamiltonian Eq. (4.9) is identical to that of a one-dimensional harmonic oscillator.

Using its analytical trace formula,? the contribution of the cyclotron orbits to the oscil-

lating part of the level density can be written as

1 R\? &
8g° = E (1 — f) Zcos(nkaC —nn) .

n=1

Here n is the winding number around the center of gyration.

(4.11)

The frequency is again

determined by the classical action along the orbit, which in this case is

S=n-hk-7R..

(4.12)

Note that here exactly half of the kinetic contribution to the action is canceled by the flux

term.

?The one dimensional harmonic oscillator is one of the few cases that can be treated exactly within

standard POT [18} .
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4.2.1.4 Additional phases

The additional phases o in the trace formula (2.15) are discussed in Sec. 4.3.2.1. There,
the Maslov index p is found to be p = 3v for bouncing orbits and p = 2 for cyclotron
orbits. The additional phase of ¢ - 7/2 stemming from the symmetry reduction is given by

5 — { 0 for (BT, R.<R) (4.13)

1 otherwise

Now for all quantities of the trace formula analytical expressions have been derived. Insert-
ing them in Eq. (2.15), the semiclassical level density for the disk billiard in homogeneous
magnetic fields can be evaluated.

4.2.2 Numerical evaluation

The infinite trace sum KEq. 2.15 has to be truncated in a numerical evaluation. The
implications of this truncation have been discussed in Sec. 3.4. To ensure the convergence
of the sum and the comparability with the quantumn results as well as to control the
truncation errors, the considerations of Sec. 3.2 will now be applied to the trace formula

of the disk billiard.

As discussed on page 20, the natural choice for the generalized energy in billiard systems
is k. According to Eq. (3.21) the quasiperiod is then given by the geometrical orbit length

2 — 2y for (BT, R. < R)
2v  otherwise

L=uR,- { (4.14)

Note that for weak fields (R, > R) L is independent of the direction of motion +.

To compute the trace formula, an appropriate window function F(L) has to be selected.
For this choice two criteria are relevant: First, F/(L) should be nonzero only in a finite
range of L, so that many terms in the trace formula are eliminated and the numerical
evaluation is simplified. Second, the window function should have an analytical Fourier
transform to enable an easy and accurate comparison with the quantum results. Either of
these conditions is met by the usual Gaussian smoothing, where the orbits are suppressed
with increasing length L according to exp{—(L/Lg)?}. In this work a triangular window is
used instead, which matches both demands. In order to make the results comparable with
the usual Gaussian smoothing, the window function is characterized with a parameter 5.
It corresponds to the variance of a Gaussian smoothing exp{—1/2(k/%)?} with the same
half-width.

Since the trace formula should be evaluated via Eq. (3.14), the compliance of conditions
Egs. (3.19) and (3.20) has to be checked. These depend on the behavior of the amplitudes
which are plotted in Fig. 4.18. As already discussed, the orbit amplitudes diverge at the
bifurcations, so that Eq. (3.20) is violated at these points. This problem will be treated
together with the inclusion of the bifurcations in Sec. 4.3.3. Except in the vicinity of
bifurcations, the conditions (3.19) and (3.20) are fulfilled, so that Eq. (3.14) is applicable.
For the cyclotron orbits discussed in Sec. 4.2.1.3, G = n-27R. and A = (2Ey) "' (1-R./R)>.
This amplitude is slowly varying in the whole energy range. For the cyclotron orbits,
approximation (3.18) is therefore justified for all E and B.

Putting everything together, this establishes a numerical scheme for the evaluation of the
semiclassical trace formula for the circular billiard.
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4.2.3 Results of the trace formula

The results of the trace formula for the disk billiard in homogeneous magnetic fields will
only be discussed insofar as they are relevant for the present work. Further details can be
found in my Diploma thesis [1] or in Ref. [4].

For zero field, the trace formula leads to an exact quantization at the EBK eigenvalues [2].
In the weak-field limit the trace formula can be approximated by replacing the amplitudes
of Eq. (4.6) by their asymptotic values for B — 0 and expanding the actions of Eq. (4.5)
up to first order in B. This reproduces, as expected, the perturbative results of Bogachek
et al. [15] and Reimann et al. [62].

The result for the shell structure (i.e. the coarse-grained level density) in comparison to
the exact quantum mechanical result is displayed in Fig. 4.8. For R. > R, the agreement
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Figure 4.8:  The semiclassical level density of the disk billiard (solid) compared to
the equivalently smoothed quantum-mechanical result (dashed). The smoothing width
18 ¥ = 0.35. Gray lines and the arrows indicate the positions of the first four Landau
levels. In weak fields (R, > R) the semiclassical result is in excellent agreement with
the exact solution, for strong fields (R, < R) the agreement is not satisfactory.

with the exact quantum mechanical result is excellent. In the strong-field regime Ro <
R, however, the agreement is not satisfactory. The positions of the Landau levels are
reproduced, but their degeneracy is overestimated in the semiclassical approximation. In
the extreme field limit (R, < R) the Landau states dominate the level density. In this
regime the cyclotron orbits dominate, since their degeneracy prefactor Eq. (4.10) grows
linearly in B. As shown in Sec. 4.2.1.3, the cyclotron orbits can be analytically transformed
to a harmonic oscillator. Thus, the semiclassical description of these orbits is exact. For
extremely strong fields, the trace formula is therefore again a good approximation.

The same results have also been obtained for the full quantization of the system [1, 4].
To summarize, both the shell structure and the full quantization, in weak as well as in
extremely strong fields, are well approximated by the semiclassical method. The regime
R. < R, however, is poorly reproduced by the trace formula.
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4.3 Beyond the leading order: 7 corrections

4.3.1 The inherent % problem in the disk billiard

As explained in the previous section, a new class of periodic orbits appears in strong
magnetic fields. These are the cyclotron orbits, which exist only for B > kR. Whereas
the bouncing orbits have a one-dimensional rotational symmetry, the cyclotron orbits are
two-dimensionally translationally degenerate. The application of Creagh’s trace formula

Eq. (2.15) leads to contributions in h3/2

stemming from the bouncing orbits. The cy-
clotron orbits, however, have a prefactor 52 . Even though the trace formula is derived
as the leading-order contribution in #, its application to the disk billiard results in terms
of different orders in h.

The inherent A problem of the disk billiard is that these different powers in A are indeed
necessary to describe the level density of the system. The leading order in A is given
by the contributions of the cyclotron orbits. These describe the Landau levels correctly,
which dominate the level density in the extreme strong field limit. At weak fields, however,
R. > R and the trace formula only consists of the bouncing orbits.

In the two limits where one order in % is dominant, i.e. the extreme and the weak field
limit, the trace formula was seen to be a good approximation. In the strong field regime
(R. S R) different powers in /i become relevant, and the semiclassical description is not
satisfactory (cf. Fig. 4.8). This observation is surprising, since the transition between
the limiting cases is mainly governed by the smoothly varying degeneracy prefactor of the
cyclotron orbits. The origin of the discrepancy between the semiclassical and the quantum
result in the strong field regime needs further investigation.

Formally, the bouncing orbits give rise to an ki correction in this regime — but, as we have
just seen, they cannot be neglected. This naturally rises the question whether other f
corrections are also relevant for the semiclassical description of this system. The follow-
ing sections select various h corrections from physical and mathematical arguments and
examine their influence. These investigations will finally show that all relevant effects can
be described in a simple, intuitive picture. More mathematically motivated corrections
will be of negligible influence. This is very convenient from an applicant’s point of view,
since the necessary modifications to the trace formula remain simple, and more involved &
corrections are irrelevant for practical applications. A theorist, however, might be disap-
pointed by the fact that all the elaborate lengthy formulas have so little influence in the
end.

4.3.2 Reflection phases

The calculation of corrections to the Maslov index is motivated by two observations: First,
a close look at the shell structure in Fig. 4.8 as well as at the corresponding full quanti-
zation data shows that the semiclassical approximation overestimates the degeneracy of
the Landau levels, and completely misses the levels slightly higher in energy. A simple
hand-waving argument links this behavior to a boundary effect: Quantum mechanically, a
particle moving on a cyclotron orbit will feel the boundary even if classically not touching
it. Particles on cyclotron orbits close to the boundary thus feel an additional confinement.
This restriction to a smaller volume will lead to a higher energy. In this picture, not all
the cyclotron orbits are degenerate. The orbits close to the boundary no longer have the
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energy of the Landau level, but a slightly higher one. This corrects the observed defects
of the semiclassical approximation. The boundary properties enter the standard trace
formula only via the Maslov index, so that a correction of p is indicated.

The second observation motivating a closer examination of the Maslov index can be illus-
trated with the diameter orbit. It exists only in the weak-field regime and develops into
a cyclotron orbit at R. = R. The action and the period change smoothly over this point,
but the Maslov index does not: It is 4 for the bouncing, and 2 for the cyclotron orbit. A
correction to the Maslov index should remove this spurious jump.

In my Diploma thesis [1], I suggested an h-correction to the Maslov index, i.e. replacing it
with a more sophisticated quantity explicitly depending on A. This section will summarize
the ansatz together with the main results.

4.3.2.1 The Maslov index

The origin of the Maslov index can most easily be understood in the one-dimensional
case. As presented in more detail in Sec. 2.1, the semiclassical approach approximates the
wave functions by plane waves with the local wave number k(z) = \/2m[E — V(z)]. This
approximation obviously breaks down at the classical turning points where E = V (z), so
that the wavelength diverges. Expanding the wave function around the classical turning
points and matching them to the plane-wave solutions far from the turning points leads
to additional phases in the semiclassical quantization. In the limit A — 0 these are
independent of the detailed shape of the potential. Each reflection at a soft® turning point
gives a phase of —7 /2, whereas each reflection at an infinitely steep wall gives a phase of
—m. These phases (in units of 7/2) are the Maslov indices.

In the case of the disk billiard, the Maslov index can be obtained by counting the classical
turning points of the one-dimensional effective potential in the radial variable r. For
skipping orbits, the Maslov index per bounce is 3, including one soft reflection at the
centrifugal barrier and one hard-wall reflection. For the cyclotron orbits, the effective
potential is a one-dimensional harmonic oscillator (see Sec. 4.2.1.3) with two soft turning
points, and thus their Maslov index per period is 2. In higher dimensions, the Maslov index
is less accessible to intuition. It can be described as a topological index characteristic for
an orbit. Its calculation for two-dimensional systems is described in appendix A.2.3. For
higher dimensions see e.g. Refs. [22, 66].

4.3.2.2 Reflection phases

For finite A the additional phases stemming from classical turning points depend on the
shape of the potential. This can be easily understood considering a cyclotron orbit at a
distance xy from the billiard boundary. Neglecting the curvature of the boundary (which
corresponds to the strong-field limit), the motion in the presence of the wall can be reduced
to an effective 1D motion just as presented in Sec. 4.2.1.3. This is shown in Fig. 4.9. The
upper row of diagrams shows the 2D motion, the lower row gives the reduction to the
one-dimensional motion in an effective potential. Figure 4.9 (a) shows the unbounded
case, in (b) the orbit is near the boundary, and (c, d) illustrate skipping orbits.

3Tn this context “soft” means that the slopes of the potential at the classical turning points are finite.
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Figure 4.9:  The cyclotron orbit is equivalent to the motion in a one-dimensional

harmonic oscillator (a). Neglecting its curvature, the billiard boundary can be imple-
mented in the effective one-dimensional motion (b)-(d).

A particle in the potential sketched in Fig. 4.9(b) is classically not influenced by the
additional wall, since it will never touch it. Quantum mechanically, however, the wave
function enters the classically forbidden region and thus feels the boundary even for xy >
R.. This leads to a smooth transition of the quantum-mechanical reflection phase ¢p
over xw = R.. The semiclassical Maslov phase, in contrast, is discontinuous at this
point. As explained in Sec. 4.3.2.1 above, it is —7 for zy > R, and —3/27 for zy <
R.. The quantum mechanical boundary effects can be implemented in the semiclassical
trace formula by replacing uw/2 by the reflection phase ¢pg of the corresponding one-
dimensional motion. This smooth version of the Maslov phase will also remove the former
clear separation between cyclotron orbits and skipping orbits. These two limiting cases
are now continuously linked, with ¢p ranging between —m and —37/2. We will refer to
the orbits in the transition region, which are close to the boundary within %, as to the
grazing orbits.

In this approximation the calculation of the reflection phases is reduced to the problem of
the one-dimensional harmonic oscillator in an additional square-well potential. The ap-
proach chosen in my Diploma thesis [1] was to integrate the quantum-mechanical problem
numerically and calculate the reflection phases ¢ from the solutions. Alternatively to
this numerical approach, an analytical approximation of the reflection phase is possible.
For a linear potential, the Schrédinger equation can be solved analytically. Matching the
solutions with the boundary condition yields an expression of the reflection phases in terms
of Airy functions:

-2 (% + arctan {A’(X)]) for X >0

YR = (4.15)

(
-2 (% + arctan [B:E:);H - %|X|2/3) for X <O0.

Expanding the potential at the turning point to linear order, these reflection phases can
be used for arbitrary potential shapes. In this approximation, X is given by

3 W 2/3
X = (— |E — V(z)| (]T) \ (4.16)
2 Jr
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with the classical turning point T" and the position of the hard wall W. For the harmonic
oscillator considered above, one finds explicitly

(2/3)

[%\/E ( Ty \/l.%vi—l — arcosh(Z) )] for |y
~[$VE (5 - 1ol VAT — aresin(finh)] 7 forfinl <1

where Ty, := 2w /R.. An equivalent approach to the reflection phase was used in a different
context by Isihara and Ebina [44].

>1

X = (4.17)

The corrections to the Maslov
index obtained from the nu-
merical approach and the

SIS
<S
SIS
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analytic approximation of R

SIIEREIISS

the reflection phase are ‘
equivalent within the con-

text of this work. Fig. 4.10 1007
shows the result of the 50
quantum mechanical cal-
culation for the reflection
phase @pr. As expected, the
transition from —w at zy >

R. to =3/27 at 2z < R.

is smooth. '.I‘he transltlf)n Figure 4.10:  The reflection phase g in dependence of the dis-
gets sharper if (kR)?/B M- tance of the center of gyration from the boundary xy. The tran-
creases. For (kR)2/B — 00, sition from x, < R, to xw > R, 1s contim/ﬁus and gets sharper
which corresponds to the for increasing (kR)?*/B. In the limit (kR)?/B — oc, which corre-
semiclassical limit A~ — 0, sponds to the semiclassical limit i — 0, the Maslov phase (thick

the standard Maslov phase /ne) is recovered.
(thick line) is reproduced. Fig. 4.10 shows that quantum corrections have the greatest
influence on the grazing orbits (2, &~ R.) and on orbits with z, 2 —R.. The latter

are known as the whispering gallery orbits, as they move in a narrow region along the
boundary.

4.3.2.3 Comparison to the quantum-mechanical result

Fig. 4.11 depicts the semiclassical shell structure calculated with reflection phases in the
whole range from zero field to full Landau quantization (solid). The comparison with the
exact quantum result (dashed) shows that the semiclassical approximation is now valid
for arbitrarily strong fields, in contrast to the standard trace formula result displayed in
Fig. 4.8. Especially the degeneracies of the Landau levels are now reproduced correctly.
This shows that the replacement of the Maslov index by the reflection phase is an important
correction in the intermediate strong field regime. The reflection phase explicitly depends
on h, so that the inclusion of this term formally corresponds to a correction in higher than
leading order in #.

Some bifurcations of important orbits are marked with vertical lines in Fig. 4.11. The
quality of the semiclassical approximation is excellent even at these points, where the
semiclassical trace formula is expected to diverge. This apparent contradiction will be
explained in the following section. There, the bifurcations will be included in the trace
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formula, and the influence of the corresponding A correction will be analyzed for the
various field regimes.
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Figure 4.11:  The semiclassical coarse-grained (3 & 0.35) level density of the disk billiard
with corrected reflection phases (solid) compared to the equivalently smoothed quantum-
mechanical result (dashed). The agreement is excellent in the whole range of energies,
disk radii, and magnetic fields. The vertical lines indicate the bifurcation pomnts of the
most important orbits. The shaded regions are enlarged in the figures below. The thick
gray lines correspond to the interpretation of the level density as given in Sec. 4.4.
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4.3.3 Bifurcations

In the disk billiard, the orbits (v, w)™ vanish pairwise with increasing magnetic field (or
decreasing energy) in tangent bifurcations (see Fig. 4.4). This type of bifurcation was
already introduced in Sec. 2.4. Due to the continuous symmetry of the disk billiard, the
integration considered there has to be performed over the angular momentum L instead
of r, but apart from that the schematic behavior of Fig. 2.1 is directly recovered. Fig. 4.12
shows the situation for the triangular* orbits. The stationary points of S(L) in the first
row correspond to the periodic orbits plotted below. Fig. 4.12(A) shows the generic

(A) (B) (©)

Figure 4.12:  h corrections to the stationary phase approzimation of the trace integral
of the level density. Upper row: Classical action S in dependence of the angular
momentum L (solid). Dashed lines give the quadratic approzimations at the stationary
points (arrows). Lower row: Classical orbits corresponding to the stationary points

of S(L). (A) Generic Gutzwiller case, (B) close to a bifurcation, (C) close to the

integration limit: creeping orbits.

situation, where the stationary points are well separated from each other and from the
integration limits. There, the stationary phase approximation according to Eq. (2.9) is
well justified. Near a bifurcation, the stationary points are in close proximity. This is
shown in Fig. 4.12(B). The situation corresponds exactly to the one discussed in Sec. 2.4.
There is was outlined that uniform approximations are the appropriate tool to overcome
the spurious divergencies of the standard Gutzwiller approach at the bifurcation points.

Applying the uniform approximation for tangent bifurcations Eqgs. (B.7, B.8) to the disk
billiard, a modified trace formula which incorporates all bifurcations can be derived. This
trace formula reads

dg = % Z DglaAi(n) cos(x) + bAi'(n) sin(x)] - (4.18)
B=(v,w)

*Note that S(L) = S(L, 3), i.e. the functional dependence of S on L, depends on the type of orbit.
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with
D 1 = R.sin®
= —_— S —
B E, \/ﬁ co vS8
_ 3 |R.. ssin® n 37"(0ﬁ+ —03-) He
* = \Y|R7T TR, 8

b - 1 8 25
~ a\Rcos(®) 7
) = { +a* for sin® > R./R

—at else

_ (R.w | Rsin(20)\ | 7lof +o5)
=l (E? R, 2 ) 4
- acos(Rsin(©)/R.) for sin® > R./R
7= { acosh(Rsin(0©)/R,) else

For the reasons mentioned in Sec. 3.4, again the smoothed level density is considered
in the numerical evaluation. The implementation of the smoothing in the trace formula
requires special care, as the amplitude factors of Eq. (4.18) are oscillating functions. The
procedure how to deal with this complication is discussed in Sec. 3.3.1. The result of the
uniform approximation, together with the influence of the smoothing scheme, is examined
in Fig. 4.13. There the contributions of the 3 = (4,1)* orbits to the oscillating part of
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Figure 4.13:  The influence of the smoothing scheme on the uniform approzimation.
All data correspond to the contributions of the 3 = (4,1)F orbits to the semiclassical
level density for B = 50 and ~ ~ 0.21. The dashed lines in (A-C) give the uniform
result together with the exact implementation of smoothing according to Sec. 3.3.1.
The solid lines show (A) Gutzwiller result; (B) naive implementation of the smoothing,
assuming slowly varying amplitudes; (C) improved ansatz as ezplained in the main
text.

the level density are plotted for B =50 and ¥ ~ 0.21. In Fig. 4.13(A), the solid line gives
the result of the Gutzwiller trace formula, with smoothing according to Eq. (3.14). The
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characteristic divergence at the bifurcation point can clearly be seen. For B < 35.36 the
(4, 1)i orbits classically do no longer exist, so that their contribution to the Gutzwiller
trace formula is zero. The uniform approximation Eq. (4.18) with smoothing according to
Eq. (3.29) is illustrated by the dashed lines in (A-C). This ansatz interpolates smoothly
over the bifurcation. Far on the real side of the bifurcation, i.e. the side where the orbits
classically exist, the uniform approximation reproduces, as expected, the Gutzwiller result.
On the complex side, the uniform approximation includes contributions of ghost orbits.
These are damped exponentially. The detailed discussion of the effects of the bifurcations
on the level density is postponed until the influence of the smoothing scheme on the
uniform result is examined.

In (B), the correct smoothing scheme (dashed) is compared to the naive application
of Eq. (3.14). This ansatz corresponds to the approximation of the Airy functions in
Eq. (4.18) as constants. Except for the vicinity of the bifurcation, this approach fails
completely. This is easily understood looking at the formula for the uniform treatment of
the tangent bifurcation Egs. (B.7, B.8). Applying the smoothing scheme of Eq. (3.14) to
this expression, the damping depends on the average 95/9FE of the two orbits. This does
not converge to the correct limit far from the bifurcation, which is given by the Gutzwiller
expression. There the damping is given in terms of the individual orbit frequencies. The
correct asymptotic behavior on the real side can be imposed by interpreting the damping
terms as parts of the semiclassical amplitudes, thus including them in the sum and dif-
ference terms of the amplitudes in Egs. (B.7, B.8). This approach, however, is restricted
to the real side, since on the complex side the actions are imaginary. This results in com-
plex arguments for the window function, which is not covered by the smoothing scheme
of Sec. 3.2. In Fig. 4.13(C), this modified smoothing scheme (solid) is compared with
the exact implementation according to Eq. (3.29) (dashed). On the real side this simple
approach leads to acceptable results. The difference to the exact inclusion of smoothing
on the complex side of the bifurcation, however, is not negligible.

In conclusion, Fig. 4.13 shows that the correct implementation of smoothing is crucial
when considering bifurcations in the trace formula. It leads to significant corrections to
the standard schemes.

Now as the effect of the smoothing scheme has been examined, the influence of the bi-
furcations on the level density should be considered. In Fig. 4.14(A), once again the
contribution of the (4,1)* orbits to the level density with (dashed) and without (solid)
uniform approximation is plotted. The large mismatch confirms that neglecting the bi-
furcation results in a wrong contribution of a single orbit to the trace formula. The total
level density, however, is not much affected. This is shown in (B, D) for two smoothing
widths. Broad smoothing leads to a small number of orbits which contribute to the trace
sum. Since the bifurcation points of these orbits do not coincide, the other orbits partially
mask the effect of a bifurcation (B). For narrow smoothing (D) more orbits contribute to
the trace formula, and the net effect of the bifurcations further decreases. Even the widths
of the poles at the divergencies get less wide when more orbits are included. This effect
is due to higher repetitions of the bifurcating orbits. These bifurcate at the same points
as the primitive orbits. Fig. 4.14 indicates that the effects of the different bifurcations
compensate to a great extent.

Although a finer resolution leads to a larger number of bifurcations included in the trace
formula (illustrated by vertical lines in Fig. 4.14(C)), their net effect decreases. The shell
structure is therefore more affected by the h corrections than the full quantization data.
For extremely broad smoothing, however, the effect of the bifurcations also decreases. This



44 CHAPTER 4: THE DISK BILLIARD

32 33 34 35 36 37 kR—
T T I [ I
T|@) o
- //’
1|® N ..
%<} Y I
- ) y c
© [T I .
Lo i R |

34.5 35 355 36 kR—

Figure 4.14:  Comparison between the standard trace formula (solid) and the uniform
approzimation (dashed) for B = 50. (A) shows the contribution of the orbits (4,1)F,
(B) and (D) give the level density with smoothing widths of ¥ ~ 0.21 and 0.012 in kR.
The vertical lines (C) indicate the positions of the bifurcations of the orbits included
in the calculation of (D).

is due to the properties of the periodic orbits in the disk billiard: At the bifurcation point,
the quasiperiod (i.e. the geometrical orbit length) is given by (cf. Eq. (4.14))

Lyt = Rorwsin (rw /v) ~ Rr?. (4.19)

The approximation on the r.h.s. is justified for all orbits except the diameter (where Ly =
2Rm), since for strong smoothing only the orbits with w = 1 are relevant. Smoothing
widths equivalent to an cut-off length L.« ~ Rr’w therefore lead to a strong damping
of the contributions from bifurcations. A cut-off length Lpyax < Rrlw suppresses the
bifurcations completely.® This is the reason why in Fig. 4.11 the expected divergencies at
the bifurcations can not be seen.

The maximum effect of the bifurcations on the level density should therefore be observed
for medium strong smoothing. This situation is plotted in Fig. 4.15, where the length
cutoff of the triangular window function was taken to be L;,.x = 12R, corresponding to
a smoothing width of 7 & 0.195. The dashed lines give, just as in Fig. 4.11, the exact
quantum result with equivalent smoothing. It is compared to the standard Gutzwiller
approach in (A, C) and to the uniform approximation in (B, D). Even for this situation,
where the influence of the bifurcations is maximal, the uniform approximation only leads
to marginally better results than the standard trace formula.

In conclusion, the influence of the bifurcations is negligible for all spectral resolutions from
the shell structure up to full quantization. Fig. 4.11 illustrates that the contributions are

This strictly holds only for window functions with F(L) =0V L > Lyax, as for the triangular window
function used here.
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Figure 4.15:  The influence of the bifurcations. Dashed: ezact quantum result for
B =50, ¥ &~ 0.195. Solid lines correspond to the standard Gutzwiller formula in (A,
C) and to the uniform approzimation in (B, D). The i correction from the bifurcations
s small and strongly localized at the bifurcation points.

damped out for large smoothing. For intermediate strong smoothing, as presented in
Fig. 4.15, the uniform approximation slightly improves the semiclassical level density.
The effect, however, is localized in a narrow region around the bifurcations and hardly
relevant in size. For higher resolution spectra, Fig. 4.13 shows that the contributions of
the bifurcations mostly cancel. The widths of the divergencies are becoming smaller, and
their net effect further decreases. The bifurcations therefore do not give rise to a relevant
h correction of the semiclassical level density, even though they lead to divergencies of the
trace formula. It should be noted that the /i correction from the bifurcations is comparable
in size with the correction stemming from the correct implementation of smoothing. It
is therefore not reasonable to include the uniform approximation without adapting the
smoothing scheme.

4.3.4 Grazing

The mechanism which necessitated the implementation of the uniform approximation in
the last section was that the final stationary phase approximation in the derivation of the
trace formula for the disk billiard failed close to bifurcations points. Fig. 4.12, which plots
the dependence of the action S on the angular momentum L of the triangular orbit, shows
that another correction might be relevant in this step.

In Fig. 4.12(A) the stationary points, which correspond to the periodic orbits sketched be-
low, are well separated both from each other and from the integration limits. Fig. 4.12(C)
illustrates the case where the 8T orbit approaches the maximum angular momentum. For
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orbits which creep along the billiard boundary, one integration limit coincides with the
stationary point. The contributions of these paths to the trace sum are expected to be half
the value of the original formula. These corrections apply for orbits close to the boundary,
so that they are called grazing corrections. At B = kR, i.e. for R. = R, this correction
applies to all 1 orbits simultaneously®. For this magnetic field strength the effect should
therefore be most pronounced.

The grazing correction can be included in the trace formula by incorporating the finite
integration limits. This leads to Fresnel type of integral instead of the Gaussian integrals
occurring for the unconstraint integration according to Eq. (2.9). The corresponding
modification of the trace formula for the disk billiard reads

1 i(’s_@_ﬂﬁz)
bg = —Tm %:ABB,ge R (4.20)

The only changes to the original expression are the factors Bz, which replace the additional
phases 0 in Eq. (2.15). These complex factors are defined as

By= Y 27 P[C(¢) +iaS(é)] . (4.21)
E=¢u,éo

For BT orbits and R, < R the coefficient o = —1, otherwise & = +1. The fli are
determined by the upper and lower integration limit, respectively:

¢ = kR 20s
T 7 \ R.sin®

The geometrical quantities ® and s are explicitly given in Eq. (4.7) on page 32. ( = +1
for the A1, and ( = —1 for the B~ orbits. For constant energy ¢ is proportional to ho1/2,

R.FR
s —(CRcos©®

F (cosOf . (4.22)

Taking into account the finite integration limits therefore leads to corrections of the order

Vh beyond the leading order.

The numerical evaluation of the trace formula again forces the introduction of a finite
smoothing width. The Fresnel integrals C' and S are oscillating functions. Therefore the
common damping ansatz Eq. 3.18 can not be used. The appropriate generalization is
given in Sec. 3.3.1, and Eq. (3.29) applies to the situation considered here. Fig. 4.16 shows
the semiclassical level density with (solid black) and without (gray) grazing correction.
The simple smoothing which assumes the Fresnel factor to be a slowly varying function
is given by the dotted line. The magnetic field is B = 50, so that R. = R for kR = 50.
The smoothing width is 7 & 0.33. The upper part of the figure shows the contributions
of the BT orbits. The closeup in the inset confirms that the simple smoothing (dashed)
leads, indeed, to a 50% correction of the Gutzwiller contribution (gray) of the 8% orbits.
Including the correct windowing (solid black), however, mostly compensates this effect.
Even more surprising is the behavior of the 87 orbits. Although they are not as close
to the integration limit as the 81 orbits, their grazing correction is nearly of the same
magnitude. The lower part of the diagram shows the total effect of the grazing correction
including all orbits. At B = 50, which corresponds to R. = R where the grazing effect
was expected to be most pronounced, the influence of the correction is small. The main

SFor R. = R all BT orbits coincide, building the whispering gallery.
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Figure 4.16:  The effect of the grazing correction for B =50 and ~ ~ 0.33. Gray:
without grazing correction; dashed: grazing correction with simple smoothing; solid
black: grazing correction with correct smoothing. Offset for clarity.

effect is not a variation of the amplitude, but a slight shift of the phase stemming from
the complex part of Bj.

This result shows that the h correction stemming from grazing can be neglected in the
trace formula of the disk billiard. Please note that the effect of the correct windowing
is of the same order of magnitude as the correct implementation of the grazing effect.
As for the bifurcation treatment above, this again shows that the technical detail of the
implementation of smoothing is of considerable importance.

4.4 Semiclassical interpretation of dg

An attractive feature of the semiclassical approximation which was not used until now is
the simple, intuitive picture it gives. This should be exploited in the following to explain
the shell structure of the disk billiard in terms of classical quantities.

According to the trace formula Eq. (2.15), each periodic orbit 5 contributes an oscillating
term to dg. Its frequency is determined by the classical action Sg along this path, which
can be locally approximated by

Sa(k) = Sz(ko) + A Gy(k) (k — ko) . (4.23)

with the quasiperiod hG. For billiard systems the quasiperiod is, according to Eq. (3.21),
identical to the geometrical orbit length L given in Eq. (4.14). The amplitudes of the
oscillating terms are Ag F(Gg), where F is the window function that depends on the
desired smoothing of the level density. Prior to the interpretation of the contributions of

the various orbits to dg, the behavior of Gg(= Lg) and Az shall be discussed.

Fig. 4.17 shows the dependence of G on the ratio R./R = k:R/B Note that for R. > R
(see right diagram of Fig. 4.17) G is independent of the direction of motion =+, even if the
classical action depends on it. In strong fields (R, < R, left diagram) G is different for
the “+”7 and the “=” orbits. Only at the bifurcation points, where the two orbits coincide,
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1 1.5 2 R./R—> 3

Figure 4.17:  The quasiperiods G of the most important orbits in dependence of
R./R. For R, > R, G is independent of the index £. The orbit bifurcation points in
strong fields (vertical lines) can clearly be seen.

they have identical G. According to Eq. (4.19), the value of G at the bifurcation points
converges to w - 2R for strong fields.

In Fig. 4.18 the amplitudes of the orbits relative to the B = 0 values,

sin®/? ©
A= 7 (4.24)

Jo

are plotted versus the ratio R./R. The amplitude of the “=” orbit is always larger than that
of the corresponding “+” orbit. At R. = R, where the “+” orbits change the topology (see
Fig. 4.3), their amplitudes are zero, so that these discontinuities do not lead to artefacts
in the level density. At the tangent bifurcations discussed above, the orbit amplitudes
diverge.

Figure 4.18: The amplitudes
of the dominating orbits f =
(v,1)* with v = 2,...,5 rela-
tive to their B = 0 value. (The 3
amplitude of the cyclotron or-

bit is in arbitrary units.) At

the bifurcation points R, = 2
sin(m v/w) indicated by ver-
tical lines, the amplitudes di-
verge. For R. > R the am-
plitudes of the bouncing orbits
quickly approach their asymp-
totic (zero-field) value. The in-
set shows this convergence in a

(=]

>
>\>—>
/
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wider range.

Now the shell structure shall be interpreted in these classical terms, starting with the weak-
field regime (R, > R). The amplitudes for zero field given in Eq. (4.24) are proportional to
v~1/2 favoring orbits with a small number of bounces v. The dependence of the amplitudes
on the magnetic field as shown in Fig. 4.18 indicates that in the region where the “~” orbits
differ significantly from the “+” orbits, the latter are negligible. These effects” together
strongly favor the (2,1) and the (3,1)” orbit. They end up with comparable amplitudes.
From this picture a pronounced beating pattern from the interference of the diameter and
the triangular orbit is expected as the dominating feature of the level density. This beating

"The G dependence of F(G) also slightly supports this effect.
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pattern is indeed observed (cf. Fig. 4.11). The analogous effect in three dimensional metal
clusters is known as supershell oscillations [61].5 The semiclassical description furthermore
predicts that this beating will persist in homogeneous magnetic fields up to a strength of
B = kR. This is in agreement with the findings in Fig. 4.11. The thick gray lines in the

frames (1a) and (1b) correspond to a function®

AG G
sin(kG(1,2)) + sin(kGq 3)- ) = sin <k7> sin <k5> . (4.25)

It correctly predicts the structure of the level density in this regime.

Approaching the field strength where R. = R, all orbits change G sharply to 27 R. At
this point, the 81 orbits coincide. The amplitude of this collective mode is small. The
[~ orbits differ from each other at R. = R. The change of S with varying B is, however,
identical for all orbits, since according to Eq. (4.23) all bouncing orbits have the same
lengths for R. = R. This implies that the variation with magnetic field is coherent for
all bouncing orbits, although their absolute values of S are different. The semiclassical
picture therefore predicts that the beating behavior will disappear at R, = R, leaving just
a simple oscillation with the common frequency. In Fig. 4.11 this sudden stop of the beat
at R. = R can clearly be seen. The gray line in frame 2 shows that the frequency of the
remaining single oscillation is predicted correctly.

In strong fields, only cyclotron orbits and bouncing orbits with a great number of bounces
v exist. The amplitudes of the latter are proportional to v=1/2, so that in the strong field
limit the cyclotron orbits are expected to dominate the level density. The gray lines in
frame 3 of Fig. 4.11 show the corresponding oscillating term,' which, indeed, reproduces
the main feature of the quantum-mechanical result (solid black). The skipping orbits with
greatest amplitudes are those which are close to their bifurcation points. All those orbits
have nearly the same value of G = w - #?R. Their contributions should therefore interfere
constructively, giving rise to small structures in the level density of this period. Such
structures can indeed be observed in a higher-resolution spectrum, and their spacing is
consistent with this simple picture.!! The effect of the only relevant % contribution was
already discussed in Sec. 4.3.2. The reflection phases remove the degeneracy of all cyclotron
orbits, leading to slightly higher energies of the orbits close to the billiard boundary. This
leads to a reduction of the Landau peak heights and to an increased level density slightly
above the Landau levels. This correction is only relevant in the intermediate strong field
regime R, S R.

This analysis shows that the simple semiclassical picture using only the classical properties
of three periodic orbits is able to explain the main features of the quite complicated
behavior of the level density'? for arbitrarily strong fields.

®In the 3D spherical cavity, the beat is due to the interference of the triangle and the square orbits (see
Ref. [11]).

9The phases are, of course, adjusted.

19For a simpler comparison, the amplitude is chosen to rise quadratically, as indicated by Eq. (4.10).

"For details see Refs. [1, 4].

2Here the dependence of the level density on the energy was interpreted. For the dependence on the
magnetic field a completely analogous approach is possible.
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4.5 Summary

In this chapter, a semiclassical approximation for the level density of the disk billiard in
homogeneous magnetic fields was derived. The agreement of the standard trace formula
with the exact quantum result is excellent for small fields as well as for extremely strong
fields, but not in the intermediate regime. This failure was suspected to be due to h
corrections to the trace formula. Three different Ai-corrections have been analyzed.

First a correction to the Maslov index was considered. This exhibits a discontinuity when
the reflection at the hard boundary is, with increasing field strength, replaced by the
soft turning point in the magnetic potential. A one-dimensional approximation leads to
reflection phases which interpolate smoothly between these limits. It was shown that
replacing the Maslov indices by reflection phases is of great importance in the strong field
regime R, < R. This holds for the shell structure as well as for full quantization.

At bifurcations, the second-order approximation of the action S around stationary points
breaks down, leading to spurious divergencies in the semiclassical amplitudes. A uniform
approximation to higher order in S shows that at the tangent bifurcation the contribution
to the trace formula is increased by a factor Rl/6 [70]. The inclusion of this h correction is
important when one considers the contribution of individual orbits to the trace formula.
The corrections, however, rapidly loose influence if either many orbits are included (which
generally is the case if a higher resolution of the spectrum is required), or the smoothing
is so broad as to suppress the bifurcating orbits strongly. The main result of this consid-
eration is that the bifurcations have the maximum influence on moderately coarse-grained
level densities. But even for this case, the h corrections due to the bifurcations are only
marginal.

Finally the creeping correction, formally occurring due to finite integration limits, was
shown to be completely negligible in the semiclassical approximation — although on first
sight it is expected to be a 50% effect. Both the implementation of bifurcation and of
grazing effects require a modification of the smoothing procedure. The corrections from
the adapted smoothing are in both cases comparable to the magnitude of the % corrections
themselves.

These considerations show that the only relevant correction to the trace formula is given
by the reflection phases. Including this, the semiclassical trace formula for the level
density is a good approximation for arbitrarily strong fields. It reproduces the exact
quantum-mechanical result with a remarkably reduced numerical effort. For the quantum-
mechanical calculation shown in Fig. 4.11, about 2500 eigenvalues had to be calculated
and numerically smoothed for each value of B , whereas the semiclassical result is obtained
summing the contributions of just 20 orbits.

The main features of the level density could be explained in a simple picture. The classi-
cal properties of three interfering orbits are sufficient to explain the behavior of the level
density in arbitrary field strengths. In weak fields the diameter together with the the
inwards-curved triangular orbit lead to a pronounced beating pattern. For B = kR all or-
bits interfere constructively, and in strong fields the cyclotron orbits dominate. They lead
to the Landau quantization. The degeneracy of the Landau levels is reproduced correctly
implementing the proximity effect of the boundary via the refection phase.

BFor R, > R even 10 orbits are sufficient.



