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28 Chapter 4: The disk billiardThe trae formula is a relatively new tehnique in mesosopi physis. The experienewith the approah is therefore rather limited. The appliation of this method to a simple,well-known model system has three motivations: First, it is desirable to test the newansatz on a non-trivial, but well-known referene system to learn about the limitations ofthe method. So the seond goal onsidering a model system is to �nd out under whihirumstanes spei� orretions in higher order of �h beome relevant. Finally, in aseswhere these orretions are not negligible, the hallenge is to improve the semilassialansatz, i.e. to inlude the relevant orretions in a generalized trae formula.The semilassial desription of the disk billiard in homogeneous magneti �elds is there-fore worked out not although the problem an be solved exatly, but beause it an. Thethree goals formulated above will serve as a guiding line through the following setions.4.1 Exat quantum solutionThe disk billiard in homogeneous magneti �elds is integrable. The two onstants ofmotion are the angular momentum and the energy. In the following, normalized energieseE in units ofE0 = �h22mR2 (4.1)and normalized magneti �elds eB in units of �h=eR2 will be used. With the disk radiusR and the wavenumber k the normalized energy is given by peE = kR. The lassialylotron radius is given by R = �hk=eB, and in normalized units by R=R = kR= eB. Theexat solution for the eigenenergies was presented by Geerinkx [31℄ and, using a di�erentapproah, by Klama et al. [49℄:eEnl = 2 eB ���nl + 1 + jlj2 + 12� ; (4.2)where the �nl are the zeros of the onuent hypergeometri funtion 1F11F1 ��nl; 1 + jlj; eB2 ! = 0 : (4.3)Here n > 0 denotes the radial and l the angular-momentum quantum number. For B = 0the eigenvalue equation simpli�es to the well-known result eEnl = (jnl)2, where jnl are thezeros of the Bessel funtions Jl(jnl) = 0. For the details of the numerial evaluation, Irefer to my Diploma thesis [1℄. Fig. 4.1 shows the dependene of the eigenvalues eEnl oneB. One learly sees how with inreasing magneti �eld the di�erent states ondense intothe Landau levels (dashed lines).4.2 The leading order in �h: Standard semilassisThe standard Gutzwiller approah [36, 37, 38, 39, 40℄ is limited to orbits whih are isolatedin phase spae. Therefore it annot be applied to the disk with its ontinuous rotational
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Figure 4.1: The quantum-mehanial eigenenergies of the irular billiard in depen-dene of the magneti �eld. The dashed lines orrespond to the four lowest Landaulevels.symmetry. Deriving a trae formula requires the extensions of Strutinisky and Magner [76℄or Creagh and Littlejohn [23℄. This has been done for the zero-�eld ase by Reimann etal. [2℄ and, independently, by Tatievski et al. [79℄. Equivalent results have been obtained byBalian and Bloh [11℄. Von Oppen [123℄ followed the approah of Berry and Tabor [13℄,whih starts from the EBK quantization of the system [46℄. Via Poisson resummationand subsequent saddle point approximations he derived a trae formula equivalent to themodi�ed Gutzwiller approah. This result shows that EBK and the modi�ed Gutzwillerapproximation are idential in the leading order of �h. Sine the intermediate steps of thealulation inlude saddle-point approximations, the identity does not neessarily holdbeyond the leading order. In a previous work I was, however, able to show numeriallywith high auray that the Gutzwiller-like trae formula reprodues exatly1 the single-partile energies of the EBK quantization. For details see Refs. [2, 1℄.For weak magneti �elds, the irular billiard was treated using a perturbative approahby Bogahek and Gogadze [15℄, Ullmo et al. [82℄ and Reimann et al. [62℄.4.2.1 Trae formula for arbitrarily strong �eldsThe generalization of the Gutzwiller trae formula to systems with ontinuous symmetriesby Creagh and Littlejohn is a onvenient starting point for the semilassial desriptionof the level density of a irular billiard in arbitrarily strong magneti �elds. For theappliation of this generalized trae formula, the periodi orbits have to be lassi�ed andtheir ations, amplitudes, and Maslov indies have to be alulated. This was the topi ofmy diploma thesis [1℄. Sine these results provide the basis for the subsequent alulations,they will be shortly reviewed in the following.1This has to be interpreted as a very fortunate ase, omparable to the harmoni osillator. There all�h orretions vanish, and the semilassial approximation is therefore exat [18℄.



30 Chapter 4: The disk billiard4.2.1.1 Classi�ation of the periodi orbitsThe lassi�ation of the periodi orbits in the system is straightforward. In zero �eld, theperiodi orbits (PO) of a irular billiard are equivalent to those in a three-dimensionalspherial avity. The omplete lassi�ation of those has already been given by Balianand Bloh [11℄. The only di�erene to the three-dimensional ase is that the orbits inthe disk billiard only have a one-dimensional degeneray, orresponding to the rotationalsymmetry of the system. Eah family of degenerate orbits with a given ation an berepresented by a regular polygon. The �rst few polygons are shown in Fig. 4.2. These
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Figure 4.2: Thelassial periodi or-bits of the iru-lar billiard in zero�eld are the regu-lar polygons. Theyan be lassi�ed with(v;w), where v isthe number of or-ners and w indiateshow often the traje-tory winds aroundthe enter.orbit families are lassi�ed by � = (v; w), where v denotes the number of orners (verties),and w is the winding number, i. e., it ounts how often an orbit winds around the enterof the disk. With v � 2w > 2 (v; w 2 IN), all families of POs of the system in the abseneof a magneti �eld are uniquely desribed by � = (v; w). Beause of the time-reversalsymmetry, all orbits exept the diameter (v = 2w) have an additional disrete two-folddegeneray, whih has to be aounted for in the trae formula.Swithing on the magneti �eld auses the lassial trajetories to bend, the diretion ofthe urvature depending on the diretion of motion with respet to the magneti �eld.This entails a breaking of time-reversal symmetry. For weak �elds, the orbits an still belassi�ed by � if an additional index (�) is introdued. This situation is shown in theupper row of diagrams in Fig. 4.3 for the orbit � = (4; 1). Up to a �eld strength where the
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Figure 4.3: A magneti�eld breaks the time-reversalsymmetry, so that the or-bits are no longer indepen-dent of the diretion of mo-tion. Introduing an addi-tional index �, the orbitsan be lassi�ed by (v;w)�,both in weak (R > R) andin strong (R < R) �elds.For strong �elds an addi-tional family of orbits o-urs. These are the y-lotron orbits, whih do nottouh the boundary.



4.2 The leading order in �h: Standard semilassis 31lassial ylotron radius R equals the disk radius R, heneforth referred to as the weak-�eld regime, the orbits do not hange their topology and the lassi�ation �� holds. Forthe strong-�eld regime with eB > kR, the struture of the POs is di�erent. This situationis shown in the seond row of diagrams in Fig. 4.3. The �� orbits vary their shapesontinuously over the point R = R, but the topologies of the �+ orbits hange abruptly.However, sine there is a one-to-one orrespondene between orbits for R >� R and forR <� R, �� still gives a omplete lassi�ation of all bouning orbits, i. e., of orbits thatare reeted at the boundary. For R < R, there are additional ylotron orbits whih donot touh the boundary at all. They have to be inluded additionally in the sum over allorbits in the trae formula. At �eld strengths where R � R �sin(�w=v), the (v; w)� orbitsno longer exist (see Fig. 4.4). They vanish pairwise in a tangent bifurations. This imposesFigure 4.4:At a magneti �eldstrength where R =R sin(� w=v), theorbits (v;w)� van-ish pairwise in tan-gent bifurations.  (v,w)+
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 R  > R sin(π⋅w/v) c  R  = R sin(π⋅w/v) c  R  < R sin(π⋅w/v) can additional restrition on the sum over (v; w). Inluding this �nally yields a ompletelassi�ation of all periodi orbits in the irular billiard at arbitrary �eld strengths.4.2.1.2 The bouning orbitsThe ation of a losed orbit in a magneti �eld an be written as the sum of the kinetipart and the magneti ux enlosed by the orbitS� = Z pdq = �hkL� � eBF� : (4.4)The enlosed areas F� of the periodi orbits disussed above (orretly ounting thoseareas that are enlosed several times, f. Fig. 4.5) as well as their geometrial lengths L�Figure 4.5: Calulat-ing the magneti uxenlosed by an or-bit, the multiple en-losed areas (darkergray) have to be or-retly aounted for. (3,1,n) (5,2,n) (7,3,n)
+ + +an be alulated by elementary geometry. In terms of the geometrial quantities R; R; and � explained in Fig. 4.6 they are given byS�(E) = v�hkR� ; (4.5)
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ϕ RFigure 4.6: The ations and amplitudes of thelassial periodial orbits an be expressed in termsof the geometrial quantities shown in this �gure.

Aording to the trae formula Eq. (2.15),the orbit amplitudes inlude an integralover the symmetry group. For the ro-tational U(1) symmetry of the disk thisintegral just gives 2�=v. The remainingfators in the amplitude are the period ofthe orbit L=�hk, and the Jaobian result-ing from the symmetry redution dL=d	,where 	 = �2n�. All these quantitiesan be alulated analytially, resultingin A� = 1E0 1pRk� 1pv RR r dsR �� ;�� = � � �  for (�+; R < R) otherwise ;(4:6)where ; d; and s are the geometriallengths skethed in Fig. 4.6. The depen-dene of these geometrial quantities on the lassi�ation parameter �� and the ylotronradius R is given by� = wv � ; = arsin� RR sin�� ;' = 8<:  � � + �=2 for (�+; R > R)� + � + �=2 for (�+; R < R) + � � �=2 for (��) ; = R os' ;s = qR2 � R2 sin2� ;d = � js� R os�j for �+s+ R os� for �� : (4.7)4.2.1.3 Cylotron orbitsAs already mentioned above, a new lass of orbits ours for eB > kR. These are theylotron orbits, whih do not touh the boundary at all (see Fig. 4.3). They form trans-lationally degenerate families, whereas the bouning orbits (v; w)� onsidered above are



4.2 The leading order in �h: Standard semilassis 33degenerate with respet to rotations. For the translational ase, the symmetry redu-tion an be performed diretly, without need for the general proedure of Creagh andLittlejohn. Therefore, the the phase-spae oordinates are transformed aording to�x := 1pjeBj �px + eB2 y� ; �x := �y +pjeBj x ;�y := 1pjeBj �py � eB2 x� ; �y := �x �pjeBj y : (4.8)
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RcFigure 4.7: The motion of a hargedpartile in a homogeneous magneti�eld an be expressed in the oordi-nates of the relative motion (~x; ~y) =jeBj�1=2(��y ; �x) and the oordinatesof the enter of gyration (X;Y ) =jeBj�1=2(�x;��y). The Hamiltonianis independent of (�x;�y); all orbitswith the enter (X;Y ) in the grayshaded area are degenerate.

�x and �y are anonially onjugate variables, sine[�x;�y℄ = i�h. The same holds for �x and �y.Apart from the fator pjeBj, (�x; �y) are the o-ordinates of the motion relative to the enter of gy-ration (�x;�y), as illustrated in Fig. 4.7. In theseoordinates the Hamiltonian readsH = eB2m (�2x + �2y) : (4:9)As expeted, H does not depend on the oordinatesof the enter of gyration. Beause the relative andthe enter-of-gyration oordinates ommute, i. e.,[�x; �x℄ = [�x; �y℄ = [�y; �x℄ = [�y; �y ℄ = 0, thedegeneray of a ylotron orbit is proportional tothe phase-spae volume V aessible for (�x;�y).This an be diretly read o� Fig. 4.7 (shaded area).The degeneray is therefore given byN = V2��h = ~B2 �1 � RR �2 : (4:10)The Hamiltonian Eq. (4.9) is idential to that of a one-dimensional harmoni osillator.Using its analytial trae formula,2 the ontribution of the ylotron orbits to the osil-lating part of the level density an be written asÆg = 12E0 �1 � RR �2 1Xn=1 os(nk�R � n�) : (4.11)Here n is the winding number around the enter of gyration. The frequeny is againdetermined by the lassial ation along the orbit, whih in this ase isS = n � �hk � �R : (4.12)Note that here exatly half of the kineti ontribution to the ation is aneled by the uxterm.2The one dimensional harmoni osillator is one of the few ases that an be treated exatly withinstandard POT [18℄.



34 Chapter 4: The disk billiard4.2.1.4 Additional phasesThe additional phases � in the trae formula (2.15) are disussed in Se. 4.3.2.1. There,the Maslov index � is found to be � = 3v for bouning orbits and � = 2 for ylotronorbits. The additional phase of Æ ��=2 stemming from the symmetry redution is given byÆ = � 0 for (�+; R < R)1 otherwise : (4.13)Now for all quantities of the trae formula analytial expressions have been derived. Insert-ing them in Eq. (2.15), the semilassial level density for the disk billiard in homogeneousmagneti �elds an be evaluated.4.2.2 Numerial evaluationThe in�nite trae sum Eq. 2.15 has to be trunated in a numerial evaluation. Theimpliations of this trunation have been disussed in Se. 3.4. To ensure the onvergeneof the sum and the omparability with the quantum results as well as to ontrol thetrunation errors, the onsiderations of Se. 3.2 will now be applied to the trae formulaof the disk billiard.As disussed on page 20, the natural hoie for the generalized energy in billiard systemsis k. Aording to Eq. (3.21) the quasiperiod is then given by the geometrial orbit lengthL = vR ��2� � 2 for (�+; R < R)2 otherwise : (4.14)Note that for weak �elds (R > R) L is independent of the diretion of motion �.To ompute the trae formula, an appropriate window funtion F (L) has to be seleted.For this hoie two riteria are relevant: First, F (L) should be nonzero only in a �niterange of L, so that many terms in the trae formula are eliminated and the numerialevaluation is simpli�ed. Seond, the window funtion should have an analytial Fouriertransform to enable an easy and aurate omparison with the quantum results. Either ofthese onditions is met by the usual Gaussian smoothing, where the orbits are suppressedwith inreasing length L aording to expf�(L=L0)2g. In this work a triangular window isused instead, whih mathes both demands. In order to make the results omparable withthe usual Gaussian smoothing, the window funtion is haraterized with a parameter ~.It orresponds to the variane of a Gaussian smoothing expf�1=2(k=~)2g with the samehalf-width.Sine the trae formula should be evaluated via Eq. (3.14), the ompliane of onditionsEqs. (3.19) and (3.20) has to be heked. These depend on the behavior of the amplitudeswhih are plotted in Fig. 4.18. As already disussed, the orbit amplitudes diverge at thebifurations, so that Eq. (3.20) is violated at these points. This problem will be treatedtogether with the inlusion of the bifurations in Se. 4.3.3. Exept in the viinity ofbifurations, the onditions (3.19) and (3.20) are ful�lled, so that Eq. (3.14) is appliable.For the ylotron orbits disussed in Se. 4.2.1.3, G = n�2�R and A = (2E0)�1(1�R=R)2.This amplitude is slowly varying in the whole energy range. For the ylotron orbits,approximation (3.18) is therefore justi�ed for all eE and eB.Putting everything together, this establishes a numerial sheme for the evaluation of thesemilassial trae formula for the irular billiard.



4.3 The leading order in �h: Standard semilassis 354.2.3 Results of the trae formulaThe results of the trae formula for the disk billiard in homogeneous magneti �elds willonly be disussed insofar as they are relevant for the present work. Further details an befound in my Diploma thesis [1℄ or in Ref. [4℄.For zero �eld, the trae formula leads to an exat quantization at the EBK eigenvalues [2℄.In the weak-�eld limit the trae formula an be approximated by replaing the amplitudesof Eq. (4.6) by their asymptoti values for eB ! 0 and expanding the ations of Eq. (4.5)up to �rst order in eB. This reprodues, as expeted, the perturbative results of Bogaheket al. [15℄ and Reimann et al. [62℄.The result for the shell struture (i. e. the oarse-grained level density) in omparison tothe exat quantum mehanial result is displayed in Fig. 4.8. For R > R, the agreement
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Figure 4.8: The semilassial level density of the disk billiard (solid) ompared tothe equivalently smoothed quantum-mehanial result (dashed). The smoothing widthis ~ = 0:35. Gray lines and the arrows indiate the positions of the �rst four Landaulevels. In weak �elds (R > R) the semilassial result is in exellent agreement withthe exat solution, for strong �elds (R <� R) the agreement is not satisfatory.with the exat quantum mehanial result is exellent. In the strong-�eld regime RC <�R, however, the agreement is not satisfatory. The positions of the Landau levels arereprodued, but their degeneray is overestimated in the semilassial approximation. Inthe extreme �eld limit (R � R) the Landau states dominate the level density. In thisregime the ylotron orbits dominate, sine their degeneray prefator Eq. (4.10) growslinearly in B. As shown in Se. 4.2.1.3, the ylotron orbits an be analytially transformedto a harmoni osillator. Thus, the semilassial desription of these orbits is exat. Forextremely strong �elds, the trae formula is therefore again a good approximation.The same results have also been obtained for the full quantization of the system [1, 4℄.To summarize, both the shell struture and the full quantization, in weak as well as inextremely strong �elds, are well approximated by the semilassial method. The regimeR <� R, however, is poorly reprodued by the trae formula.



36 Chapter 4: The disk billiard4.3 Beyond the leading order: �h orretions4.3.1 The inherent �h problem in the disk billiardAs explained in the previous setion, a new lass of periodi orbits appears in strongmagneti �elds. These are the ylotron orbits, whih exist only for eB > kR. Whereasthe bouning orbits have a one-dimensional rotational symmetry, the ylotron orbits aretwo-dimensionally translationally degenerate. The appliation of Creagh's trae formulaEq. (2.15) leads to ontributions in �h�3=2 stemming from the bouning orbits. The y-lotron orbits, however, have a prefator �h�2 . Even though the trae formula is derivedas the leading-order ontribution in �h, its appliation to the disk billiard results in termsof di�erent orders in �h.The inherent �h problem of the disk billiard is that these di�erent powers in �h are indeedneessary to desribe the level density of the system. The leading order in �h is givenby the ontributions of the ylotron orbits. These desribe the Landau levels orretly,whih dominate the level density in the extreme strong �eld limit. At weak �elds, however,R > R and the trae formula only onsists of the bouning orbits.In the two limits where one order in �h is dominant, i. e. the extreme and the weak �eldlimit, the trae formula was seen to be a good approximation. In the strong �eld regime(R <� R) di�erent powers in �h beome relevant, and the semilassial desription is notsatisfatory (f. Fig. 4.8). This observation is surprising, sine the transition betweenthe limiting ases is mainly governed by the smoothly varying degeneray prefator of theylotron orbits. The origin of the disrepany between the semilassial and the quantumresult in the strong �eld regime needs further investigation.Formally, the bouning orbits give rise to an �h orretion in this regime { but, as we havejust seen, they annot be negleted. This naturally rises the question whether other �horretions are also relevant for the semilassial desription of this system. The follow-ing setions selet various �h orretions from physial and mathematial arguments andexamine their inuene. These investigations will �nally show that all relevant e�ets anbe desribed in a simple, intuitive piture. More mathematially motivated orretionswill be of negligible inuene. This is very onvenient from an appliant's point of view,sine the neessary modi�ations to the trae formula remain simple, and more involved �horretions are irrelevant for pratial appliations. A theorist, however, might be disap-pointed by the fat that all the elaborate lengthy formulas have so little inuene in theend.4.3.2 Reetion phasesThe alulation of orretions to the Maslov index is motivated by two observations: First,a lose look at the shell struture in Fig. 4.8 as well as at the orresponding full quanti-zation data shows that the semilassial approximation overestimates the degeneray ofthe Landau levels, and ompletely misses the levels slightly higher in energy. A simplehand-waving argument links this behavior to a boundary e�et: Quantum mehanially, apartile moving on a ylotron orbit will feel the boundary even if lassially not touhingit. Partiles on ylotron orbits lose to the boundary thus feel an additional on�nement.This restrition to a smaller volume will lead to a higher energy. In this piture, not allthe ylotron orbits are degenerate. The orbits lose to the boundary no longer have the



4.3 Beyond the leading order: �h orretions 37energy of the Landau level, but a slightly higher one. This orrets the observed defetsof the semilassial approximation. The boundary properties enter the standard traeformula only via the Maslov index, so that a orretion of � is indiated.The seond observation motivating a loser examination of the Maslov index an be illus-trated with the diameter orbit. It exists only in the weak-�eld regime and develops intoa ylotron orbit at R = R. The ation and the period hange smoothly over this point,but the Maslov index does not: It is 4 for the bouning, and 2 for the ylotron orbit. Aorretion to the Maslov index should remove this spurious jump.In my Diploma thesis [1℄, I suggested an �h-orretion to the Maslov index, i. e. replaing itwith a more sophistiated quantity expliitly depending on �h. This setion will summarizethe ansatz together with the main results.4.3.2.1 The Maslov indexThe origin of the Maslov index an most easily be understood in the one-dimensionalase. As presented in more detail in Se. 2.1, the semilassial approah approximates thewave funtions by plane waves with the loal wave number k(x) =p2m[E � V (x)℄. Thisapproximation obviously breaks down at the lassial turning points where E = V (x), sothat the wavelength diverges. Expanding the wave funtion around the lassial turningpoints and mathing them to the plane-wave solutions far from the turning points leadsto additional phases in the semilassial quantization. In the limit �h ! 0 these areindependent of the detailed shape of the potential. Eah reetion at a soft3 turning pointgives a phase of ��=2, whereas eah reetion at an in�nitely steep wall gives a phase of��. These phases (in units of �=2) are the Maslov indies.In the ase of the disk billiard, the Maslov index an be obtained by ounting the lassialturning points of the one-dimensional e�etive potential in the radial variable r. Forskipping orbits, the Maslov index per boune is 3, inluding one soft reetion at theentrifugal barrier and one hard-wall reetion. For the ylotron orbits, the e�etivepotential is a one-dimensional harmoni osillator (see Se. 4.2.1.3) with two soft turningpoints, and thus their Maslov index per period is 2. In higher dimensions, the Maslov indexis less aessible to intuition. It an be desribed as a topologial index harateristi foran orbit. Its alulation for two-dimensional systems is desribed in appendix A.2.3. Forhigher dimensions see e. g. Refs. [22, 66℄.4.3.2.2 Reetion phasesFor �nite �h the additional phases stemming from lassial turning points depend on theshape of the potential. This an be easily understood onsidering a ylotron orbit at adistane xw from the billiard boundary. Negleting the urvature of the boundary (whihorresponds to the strong-�eld limit), the motion in the presene of the wall an be reduedto an e�etive 1D motion just as presented in Se. 4.2.1.3. This is shown in Fig. 4.9. Theupper row of diagrams shows the 2D motion, the lower row gives the redution to theone-dimensional motion in an e�etive potential. Figure 4.9 (a) shows the unboundedase, in (b) the orbit is near the boundary, and (, d) illustrate skipping orbits.3In this ontext \soft" means that the slopes of the potential at the lassial turning points are �nite.
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4.3 Beyond the leading order: �h orretions 39with the lassial turning point T and the position of the hard wall W . For the harmoniosillator onsidered above, one �nds expliitlyX = 8><>: h34peE � exw pex2w � 1 � arosh(exw) �i(2=3) for jexwj � 1�h34peE ��2 � jexwjpex2w � 1 � arsin(jexwj)�i(2=3) for jexwj < 1 ; (4.17)where exw := xw=R. An equivalent approah to the reetion phase was used in a di�erentontext by Isihara and Ebina [44℄.
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The orretions to the Maslovindex obtained from the nu-merial approah and theanalyti approximation ofthe reetion phase areequivalent within the on-text of this work. Fig. 4.10shows the result of thequantum mehanial al-ulation for the reetionphase 'R. As expeted, thetransition from �� at xw �R to �3=2� at xw � Ris smooth. The transitiongets sharper if (kR)2= eB in-reases. For (kR)2= ~B !1,whih orresponds to thesemilassial limit �h ! 0,the standard Maslov phase(thik line) is reprodued. Fig. 4.10 shows that quantum orretions have the greatestinuene on the grazing orbits (xw � R) and on orbits with xw >� �R. The latterare known as the whispering gallery orbits, as they move in a narrow region along theboundary.4.3.2.3 Comparison to the quantum-mehanial resultFig. 4.11 depits the semilassial shell struture alulated with reetion phases in thewhole range from zero �eld to full Landau quantization (solid). The omparison with theexat quantum result (dashed) shows that the semilassial approximation is now validfor arbitrarily strong �elds, in ontrast to the standard trae formula result displayed inFig. 4.8. Espeially the degeneraies of the Landau levels are now reprodued orretly.This shows that the replaement of the Maslov index by the reetion phase is an importantorretion in the intermediate strong �eld regime. The reetion phase expliitly dependson �h, so that the inlusion of this term formally orresponds to a orretion in higher thanleading order in �h.Some bifurations of important orbits are marked with vertial lines in Fig. 4.11. Thequality of the semilassial approximation is exellent even at these points, where thesemilassial trae formula is expeted to diverge. This apparent ontradition will beexplained in the following setion. There, the bifurations will be inluded in the trae



40 Chapter 4: The disk billiardformula, and the inuene of the orresponding �h orretion will be analyzed for thevarious �eld regimes.
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4.3 Beyond the leading order: �h orretions 414.3.3 BifurationsIn the disk billiard, the orbits (v; w)� vanish pairwise with inreasing magneti �eld (ordereasing energy) in tangent bifurations (see Fig. 4.4). This type of bifuration wasalready introdued in Se. 2.4. Due to the ontinuous symmetry of the disk billiard, theintegration onsidered there has to be performed over the angular momentum L insteadof r, but apart from that the shemati behavior of Fig. 2.1 is diretly reovered. Fig. 4.12shows the situation for the triangular4 orbits. The stationary points of S(L) in the �rstrow orrespond to the periodi orbits plotted below. Fig. 4.12(A) shows the generi
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LmaxLmin LmaxLmin LmaxLminFigure 4.12: �h orretions to the stationary phase approximation of the trae integralof the level density. Upper row: Classial ation S in dependene of the angularmomentum L (solid). Dashed lines give the quadrati approximations at the stationarypoints (arrows). Lower row: Classial orbits orresponding to the stationary pointsof S(L). (A) Generi Gutzwiller ase, (B) lose to a bifuration, (C) lose to theintegration limit: reeping orbits.situation, where the stationary points are well separated from eah other and from theintegration limits. There, the stationary phase approximation aording to Eq. (2.9) iswell justi�ed. Near a bifuration, the stationary points are in lose proximity. This isshown in Fig. 4.12(B). The situation orresponds exatly to the one disussed in Se. 2.4.There is was outlined that uniform approximations are the appropriate tool to overomethe spurious divergenies of the standard Gutzwiller approah at the bifuration points.Applying the uniform approximation for tangent bifurations Eqs. (B.7, B.8) to the diskbilliard, a modi�ed trae formula whih inorporates all bifurations an be derived. Thistrae formula readsÆg = 1��h X�=(v;w)D� [aAi(�) os(�) + bAi0(�) sin(�)℄ : (4.18)4Note that S(L) = S(L;�), i. e. the funtional dependene of S on L, depends on the type of orbit.



42 Chapter 4: The disk billiardwith D� = 1E0 �pkR os�rR sin�vsa = �32v ����RR e � s sin�R ����+ 3�(��+ � ���)8 �1=6b = 1a � sR os(�) � 2e� �� = � +a4 for sin� > R=R�a4 else� = v�RR �2 + RR sin(2�)2 � + �(�+� + ��� )4e = � aos(R sin(�)=R) for sin� > R=Raosh(R sin(�)=R) else :For the reasons mentioned in Se. 3.4, again the smoothed level density is onsideredin the numerial evaluation. The implementation of the smoothing in the trae formularequires speial are, as the amplitude fators of Eq. (4.18) are osillating funtions. Theproedure how to deal with this ompliation is disussed in Se. 3.3.1. The result of theuniform approximation, together with the inuene of the smoothing sheme, is examinedin Fig. 4.13. There the ontributions of the � = (4; 1)� orbits to the osillating part of
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→Figure 4.13: The inuene of the smoothing sheme on the uniform approximation.All data orrespond to the ontributions of the � = (4; 1)� orbits to the semilassiallevel density for eB = 50 and e � 0:21. The dashed lines in (A-C) give the uniformresult together with the exat implementation of smoothing aording to Se. 3.3.1.The solid lines show (A) Gutzwiller result; (B) naive implementation of the smoothing,assuming slowly varying amplitudes; (C) improved ansatz as explained in the maintext.the level density are plotted for eB = 50 and ~ � 0:21. In Fig. 4.13(A), the solid line givesthe result of the Gutzwiller trae formula, with smoothing aording to Eq. (3.14). The



4.3 Beyond the leading order: �h orretions 43harateristi divergene at the bifuration point an learly be seen. For eB <� 35:36 the(4; 1)� orbits lassially do no longer exist, so that their ontribution to the Gutzwillertrae formula is zero. The uniform approximation Eq. (4.18) with smoothing aording toEq. (3.29) is illustrated by the dashed lines in (A-C). This ansatz interpolates smoothlyover the bifuration. Far on the real side of the bifuration, i. e. the side where the orbitslassially exist, the uniform approximation reprodues, as expeted, the Gutzwiller result.On the omplex side, the uniform approximation inludes ontributions of ghost orbits.These are damped exponentially. The detailed disussion of the e�ets of the bifurationson the level density is postponed until the inuene of the smoothing sheme on theuniform result is examined.In (B), the orret smoothing sheme (dashed) is ompared to the naive appliationof Eq. (3.14). This ansatz orresponds to the approximation of the Airy funtions inEq. (4.18) as onstants. Exept for the viinity of the bifuration, this approah failsompletely. This is easily understood looking at the formula for the uniform treatment ofthe tangent bifuration Eqs. (B.7, B.8). Applying the smoothing sheme of Eq. (3.14) tothis expression, the damping depends on the average �S=�E of the two orbits. This doesnot onverge to the orret limit far from the bifuration, whih is given by the Gutzwillerexpression. There the damping is given in terms of the individual orbit frequenies. Theorret asymptoti behavior on the real side an be imposed by interpreting the dampingterms as parts of the semilassial amplitudes, thus inluding them in the sum and dif-ferene terms of the amplitudes in Eqs. (B.7, B.8). This approah, however, is restritedto the real side, sine on the omplex side the ations are imaginary. This results in om-plex arguments for the window funtion, whih is not overed by the smoothing shemeof Se. 3.2. In Fig. 4.13(C), this modi�ed smoothing sheme (solid) is ompared withthe exat implementation aording to Eq. (3.29) (dashed). On the real side this simpleapproah leads to aeptable results. The di�erene to the exat inlusion of smoothingon the omplex side of the bifuration, however, is not negligible.In onlusion, Fig. 4.13 shows that the orret implementation of smoothing is ruialwhen onsidering bifurations in the trae formula. It leads to signi�ant orretions tothe standard shemes.Now as the e�et of the smoothing sheme has been examined, the inuene of the bi-furations on the level density should be onsidered. In Fig. 4.14(A), one again theontribution of the (4; 1)� orbits to the level density with (dashed) and without (solid)uniform approximation is plotted. The large mismath on�rms that negleting the bi-furation results in a wrong ontribution of a single orbit to the trae formula. The totallevel density, however, is not muh a�eted. This is shown in (B, D) for two smoothingwidths. Broad smoothing leads to a small number of orbits whih ontribute to the traesum. Sine the bifuration points of these orbits do not oinide, the other orbits partiallymask the e�et of a bifuration (B). For narrow smoothing (D) more orbits ontribute tothe trae formula, and the net e�et of the bifurations further dereases. Even the widthsof the poles at the divergenies get less wide when more orbits are inluded. This e�etis due to higher repetitions of the bifurating orbits. These bifurate at the same pointsas the primitive orbits. Fig. 4.14 indiates that the e�ets of the di�erent bifurationsompensate to a great extent.Although a �ner resolution leads to a larger number of bifurations inluded in the traeformula (illustrated by vertial lines in Fig. 4.14(C)), their net e�et dereases. The shellstruture is therefore more a�eted by the �h orretions than the full quantization data.For extremely broad smoothing, however, the e�et of the bifurations also dereases. This
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46 Chapter 4: The disk billiardorbits whih reep along the billiard boundary, one integration limit oinides with thestationary point. The ontributions of these paths to the trae sum are expeted to be halfthe value of the original formula. These orretions apply for orbits lose to the boundary,so that they are alled grazing orretions. At eB = kR, i. e. for R = R, this orretionapplies to all �+ orbits simultaneously6. For this magneti �eld strength the e�et shouldtherefore be most pronouned.The grazing orretion an be inluded in the trae formula by inorporating the �niteintegration limits. This leads to Fresnel type of integral instead of the Gaussian integralsourring for the unonstraint integration aording to Eq. (2.9). The orrespondingmodi�ation of the trae formula for the disk billiard readsÆg = 1��hIm24X� A�B�ei� S��h ��� �2 �35 : (4.20)The only hanges to the original expression are the fators B� , whih replae the additionalphases Æ in Eq. (2.15). These omplex fators are de�ned asB� = X�=�u;�o 2�1=2 [C(�) + i�S(�)℄ : (4.21)For �+ orbits and R < R the oeÆient � = �1, otherwise � = +1. The �ul aredetermined by the upper and lower integration limit, respetively:�ul =rkR� r 2vsR sin� ���� R �Rs� �R os� � � os����� : (4.22)The geometrial quantities � and s are expliitly given in Eq. (4.7) on page 32. � = +1for the �+, and � = �1 for the �� orbits. For onstant energy � is proportional to �h�1=2.Taking into aount the �nite integration limits therefore leads to orretions of the orderp�h beyond the leading order.The numerial evaluation of the trae formula again fores the introdution of a �nitesmoothing width. The Fresnel integrals C and S are osillating funtions. Therefore theommon damping ansatz Eq. 3.18 an not be used. The appropriate generalization isgiven in Se. 3.3.1, and Eq. (3.29) applies to the situation onsidered here. Fig. 4.16 showsthe semilassial level density with (solid blak) and without (gray) grazing orretion.The simple smoothing whih assumes the Fresnel fator to be a slowly varying funtionis given by the dotted line. The magneti �eld is eB = 50, so that R = R for kR = 50.The smoothing width is e � 0:33. The upper part of the �gure shows the ontributionsof the �+ orbits. The loseup in the inset on�rms that the simple smoothing (dashed)leads, indeed, to a 50% orretion of the Gutzwiller ontribution (gray) of the �+ orbits.Inluding the orret windowing (solid blak), however, mostly ompensates this e�et.Even more surprising is the behavior of the �� orbits. Although they are not as loseto the integration limit as the �+ orbits, their grazing orretion is nearly of the samemagnitude. The lower part of the diagram shows the total e�et of the grazing orretioninluding all orbits. At eB = 50, whih orresponds to R = R where the grazing e�etwas expeted to be most pronouned, the inuene of the orretion is small. The main6For R = R all �+ orbits oinide, building the whispering gallery.
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Figure 4.16: The e�et of the grazing orretion for eB = 50 and e � 0:33. Gray:without grazing orretion; dashed: grazing orretion with simple smoothing; solidblak: grazing orretion with orret smoothing. O�set for larity.e�et is not a variation of the amplitude, but a slight shift of the phase stemming fromthe omplex part of B�.This result shows that the �h orretion stemming from grazing an be negleted in thetrae formula of the disk billiard. Please note that the e�et of the orret windowingis of the same order of magnitude as the orret implementation of the grazing e�et.As for the bifuration treatment above, this again shows that the tehnial detail of theimplementation of smoothing is of onsiderable importane.4.4 Semilassial interpretation of ÆgAn attrative feature of the semilassial approximation whih was not used until now isthe simple, intuitive piture it gives. This should be exploited in the following to explainthe shell struture of the disk billiard in terms of lassial quantities.Aording to the trae formula Eq. (2.15), eah periodi orbit � ontributes an osillatingterm to Æg. Its frequeny is determined by the lassial ation S� along this path, whihan be loally approximated byS�(k) = S�(k0) + �hG�(k) (k � k0) ; (4.23)with the quasiperiod �hG. For billiard systems the quasiperiod is, aording to Eq. (3.21),idential to the geometrial orbit length L given in Eq. (4.14). The amplitudes of theosillating terms are A� F (G�), where F is the window funtion that depends on thedesired smoothing of the level density. Prior to the interpretation of the ontributions ofthe various orbits to Æg, the behavior of G�(= L�) and A� shall be disussed.Fig. 4.17 shows the dependene of G on the ratio R=R = kR= eB. Note that for R > R(see right diagram of Fig. 4.17) G is independent of the diretion of motion �, even if thelassial ation depends on it. In strong �elds (R < R, left diagram) G is di�erent forthe \+" and the \{" orbits. Only at the bifuration points, where the two orbits oinide,
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Now the shell struture shall be interpreted in these lassial terms, starting with the weak-�eld regime (R > R). The amplitudes for zero �eld given in Eq. (4.24) are proportional tov�1=2, favoring orbits with a small number of bounes v. The dependene of the amplitudeson the magneti �eld as shown in Fig. 4.18 indiates that in the region where the \{" orbitsdi�er signi�antly from the \+" orbits, the latter are negligible. These e�ets7 togetherstrongly favor the (2; 1) and the (3; 1)� orbit. They end up with omparable amplitudes.From this piture a pronouned beating pattern from the interferene of the diameter andthe triangular orbit is expeted as the dominating feature of the level density. This beating7The G dependene of F (G) also slightly supports this e�et.



4.5 Semilassial interpretation of Æg 49pattern is indeed observed (f. Fig. 4.11). The analogous e�et in three dimensional metallusters is known as supershell osillations [61℄.8 The semilassial desription furthermorepredits that this beating will persist in homogeneous magneti �elds up to a strength ofeB = kR. This is in agreement with the �ndings in Fig. 4.11. The thik gray lines in theframes (1a) and (1b) orrespond to a funtion9sin(kG(1;2)) + sin(kG(1;3)�) = sin�k�G2 � sin�k �G2 � : (4.25)It orretly predits the struture of the level density in this regime.Approahing the �eld strength where R = R, all orbits hange G sharply to 2�R. Atthis point, the �+ orbits oinide. The amplitude of this olletive mode is small. The�� orbits di�er from eah other at R = R. The hange of S with varying B is, however,idential for all orbits, sine aording to Eq. (4.23) all bouning orbits have the samelengths for R = R. This implies that the variation with magneti �eld is oherent forall bouning orbits, although their absolute values of S are di�erent. The semilassialpiture therefore predits that the beating behavior will disappear at R = R, leaving justa simple osillation with the ommon frequeny. In Fig. 4.11 this sudden stop of the beatat R = R an learly be seen. The gray line in frame 2 shows that the frequeny of theremaining single osillation is predited orretly.In strong �elds, only ylotron orbits and bouning orbits with a great number of bounesv exist. The amplitudes of the latter are proportional to v�1=2, so that in the strong �eldlimit the ylotron orbits are expeted to dominate the level density. The gray lines inframe 3 of Fig. 4.11 show the orresponding osillating term,10 whih, indeed, reproduesthe main feature of the quantum-mehanial result (solid blak). The skipping orbits withgreatest amplitudes are those whih are lose to their bifuration points. All those orbitshave nearly the same value of G = w � �2R. Their ontributions should therefore interfereonstrutively, giving rise to small strutures in the level density of this period. Suhstrutures an indeed be observed in a higher-resolution spetrum, and their spaing isonsistent with this simple piture.11 The e�et of the only relevant �h ontribution wasalready disussed in Se. 4.3.2. The reetion phases remove the degeneray of all ylotronorbits, leading to slightly higher energies of the orbits lose to the billiard boundary. Thisleads to a redution of the Landau peak heights and to an inreased level density slightlyabove the Landau levels. This orretion is only relevant in the intermediate strong �eldregime R <� R.This analysis shows that the simple semilassial piture using only the lassial propertiesof three periodi orbits is able to explain the main features of the quite ompliatedbehavior of the level density12 for arbitrarily strong �elds.8In the 3D spherial avity, the beat is due to the interferene of the triangle and the square orbits (seeRef. [11℄).9The phases are, of ourse, adjusted.10For a simpler omparison, the amplitude is hosen to rise quadratially, as indiated by Eq. (4.10).11For details see Refs. [1, 4℄.12Here the dependene of the level density on the energy was interpreted. For the dependene on themagneti �eld a ompletely analogous approah is possible.



50 Chapter 4: The disk billiard4.5 SummaryIn this hapter, a semilassial approximation for the level density of the disk billiard inhomogeneous magneti �elds was derived. The agreement of the standard trae formulawith the exat quantum result is exellent for small �elds as well as for extremely strong�elds, but not in the intermediate regime. This failure was suspeted to be due to �horretions to the trae formula. Three di�erent �h-orretions have been analyzed.First a orretion to the Maslov index was onsidered. This exhibits a disontinuity whenthe reetion at the hard boundary is, with inreasing �eld strength, replaed by thesoft turning point in the magneti potential. A one-dimensional approximation leads toreetion phases whih interpolate smoothly between these limits. It was shown thatreplaing the Maslov indies by reetion phases is of great importane in the strong �eldregime R <� R. This holds for the shell struture as well as for full quantization.At bifurations, the seond-order approximation of the ation S around stationary pointsbreaks down, leading to spurious divergenies in the semilassial amplitudes. A uniformapproximation to higher order in S shows that at the tangent bifuration the ontributionto the trae formula is inreased by a fator �h1=6 [70℄. The inlusion of this �h orretion isimportant when one onsiders the ontribution of individual orbits to the trae formula.The orretions, however, rapidly loose inuene if either many orbits are inluded (whihgenerally is the ase if a higher resolution of the spetrum is required), or the smoothingis so broad as to suppress the bifurating orbits strongly. The main result of this onsid-eration is that the bifurations have the maximum inuene on moderately oarse-grainedlevel densities. But even for this ase, the �h orretions due to the bifurations are onlymarginal.Finally the reeping orretion, formally ourring due to �nite integration limits, wasshown to be ompletely negligible in the semilassial approximation | although on �rstsight it is expeted to be a 50% e�et. Both the implementation of bifuration and ofgrazing e�ets require a modi�ation of the smoothing proedure. The orretions fromthe adapted smoothing are in both ases omparable to the magnitude of the �h orretionsthemselves.These onsiderations show that the only relevant orretion to the trae formula is givenby the reetion phases. Inluding this, the semilassial trae formula for the leveldensity is a good approximation for arbitrarily strong �elds. It reprodues the exatquantum-mehanial result with a remarkably redued numerial e�ort. For the quantum-mehanial alulation shown in Fig. 4.11, about 2500 eigenvalues had to be alulatedand numerially smoothed for eah value of eB, whereas the semilassial result is obtainedsumming the ontributions of just 20 orbits.13The main features of the level density ould be explained in a simple piture. The lassi-al properties of three interfering orbits are suÆient to explain the behavior of the leveldensity in arbitrary �eld strengths. In weak �elds the diameter together with the theinwards-urved triangular orbit lead to a pronouned beating pattern. For eB = kR all or-bits interfere onstrutively, and in strong �elds the ylotron orbits dominate. They leadto the Landau quantization. The degeneray of the Landau levels is reprodued orretlyimplementing the proximity e�et of the boundary via the refetion phase.13For R > R even 10 orbits are suÆient.


