
Chapter 3Smoothing quantum osillationsThis hapter is devoted to the inlusion of �nite temperature and impurity satter-ing in semilassial approximations. The ommon mirosopi approah is outlined,and another, more mathematially oriented ansatz is presented. The omparison ofthe two proedures allows an extension of the smoothing formalism to higher-orderontributions in �h. This setion provides some of the tehnial details whih will beimportant when onsidering �h orretions in the subsequent hapters.
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16 Chapter 3: Smoothing quantum osillationsThe quantum mehanial level density of pure systems is given by a sum of Æ-funtionsentered at the eigenenergies. Experiments on mesosopi systems, however, are performedat �nite temperatures. Furthermore, the samples are not ideally lean, but inorporateimpurities (ontaminations, lattie defets, et.). These e�ets broaden the levels to a�nite width, thus smoothing the level density. If the line width is smaller than the meanlevel spaing, the individual quantum states an still be observed. This situation willbe referred to as full quantization. For larger smoothing widths, i. e. line widths largerthat the mean level spaing, the individual levels annot be resolved. This is alled theoarse-grained level density in the following.Only for very peuliar systems, like the harmoni osillator, are the levels regularly dis-tributed in energy. The generi situation for �nite fermion systems are groups of levels,separated by gaps larger than the mean level spaing. These groups are alled shells a-ording to the anonial example of the eletroni s-, p-, d-, . . . shells in atoms. This shellstruture survives even for strong broadening of the lines. It is therefore often the onlyexperimentally observable reminisene of the quantum nature of a sample. Those shelle�ets are a typial feature of �nite fermion systems. Prominent examples inlude theabundane spetra of alkali lusters [50, 26℄ or the stability of nulei [117℄.This hapter deals with tehniques that inlude the e�ets whih lead to �nite line widths inthe semilassial trae formula. The ommon ansatz starts with inluding the mirosopie�ets on a quantum mehanial level and re-derives the semilassial approximation alongthe same line as alulating the original trae formula. The resulting expression di�ersfrom the simple trae formula Eq. (2.14) by additional terms that damp the amplitudesof the periodi orbit ontributions.In Se. 3.2, an alternative ansatz is derived. The essential idea is to establish a formalrelation between line shapes and amplitude damping shemes. Provided the knowledge ofthe orret line shape, this method an also be used for the alulation of the orrespondingamplitude damping fators.In leading order of �h, these two approahes lead of ourse to equivalent results. The seondtehnique, however, an be generalized to higher-order ontributions. The idea exploitedin Se. 3.3 is to replae the mirosopi ansatz by the seond approah if higher orders in�h are to be inluded. This will be of great importane for the examination of higher-orderontributions in �h to the trae sum in the subsequent hapters.A ouple of nie side results from the inlusion of �nite line widths in the trae formulaare disussed in Se. 3.4.3.1 The mirosopi approah to smoothingThe general sheme how to inlude �nite temperatures, impurity sattering, and relatede�ets on a mirosopi level neessitates the re-derivation of the trae formula. Afterinorporating the e�et in the quantum mehanial alulation, e. g. by inluding weakdisorder or �nite temperature by the appropriate ensemble averages, the Green's fun-tions are replaed by their semilassial approximations. Subsequent stationary phaseapproximations lead to trae formulae similar to Eq. (2.14). This approah opens up thepossibility of a semilassial alulation of line shapes and line widths. Note, however,that despite reent progress [60℄ the quantum mehanial alulation of line shapes and



3.1 The mirosopi approah to smoothing 17line widths is still a mostly unsettled problem.1 Sine the semilassial approximationstarts from the quantum formalism, this is equally true for for semilassis. This workis not intended to ontribute to questions related to line shapes and relative amplitudes,so that temperature and sattering will only be inluded along the simple lines outlinedbelow.For the very low temperatures used in the measurement of mesosopi semiondutor de-vies, phonons (and their interation with harge arriers) an be negleted. The onlyrelevant temperature-related e�et onerning the level density stems from the Fermi dis-tribution. For this situation, the inlusion of �nite temperature on the osillating part ofthe level density is simply given byÆg(�; T ) = Z 10 dE Æg(E; T = 0) f 0(E � �) ; (3.1)with the Fermi distribution funtionf(E � �) = 11 + exp�E��kBT � : (3.2)The derivative of the Fermi distribution is strongly peaked around the Fermi energy �, sothat Eq. (3.1) mainly introdues an energy average over a typial width of kBT . Performingthis integration leads to an additional temperature-dependent fator R in the trae formulaR(Tpo) = Tpo=�Tsinh(Tpo=�T ) : (3.3)Here Tpo is the period of the orbit and �T = �hkBT=� de�nes the thermal uto� time �T .For a detailed derivation, see for example Refs. [96, 105, 100, 17℄.The inlusion of impurities in semilassial formulae is, even on an elementary level, muhmore elaborate than inluding �nite temperature. In the semilassial piture, satteringenters via three distint e�ets:1. The amplitudes of the periodi orbits are redued due to the �nite probability ofsattering out of the trajetory. This e�et is relevant even for small impurityonentrations.2. New orbits whih inlude sattering events (i. e. losed 'hopping' orbits from sat-tering enter to sattering enter) our. These orbits are for example responsiblefor universal ondutane utuations (UCF) and weak loalization. This e�et isonly relevant for suÆiently high onentrations of satterers.3. Sattering may introdue interferene between otherwise oherent orbits (like indegenerate orbit families).In ballisti systems, the �rst of these e�ets dominates. Sine sattering will only beonsidered with respet to transport properties in later setions, the disussion about theinlusion of the e�ets is postponed until then. Here only the main result of this analysis1This applies espeially to transport properties. So for example not even the amplitude of the Shubnikov-de-Haas osillations of the free 2DEG is understood theoretially [125℄.



18 Chapter 3: Smoothing quantum osillationsshould be stated, namely that for ballisti systems the proedure is very similar to theinlusion of �nite temperatures. The e�et of the satterers an be approximated by adamping fator F depending exponentially on the orbit lengthF (Lpo) = e�Lpo=(2`) : (3.4)Here ` is the elasti mean-free path of the system and Lpo denotes the orbit length. Forbilliards, where Lpo = vFTpo, this damping an also be expressed in terms of the satteringtime �s byF (Tpo) = e�Tpo=(2�s) ; (3.5)where the sattering time is related to the mobility � by �s = m?�=e.These two results establish a �rst onnetion between smoothing and amplitude damping,a relation that will be examined more deeply in the following setion. Please note thatthe semilassial inlusion of �nite temperature and mean-free path is { just as the traeformula itself { only orret up to leading order in �h. Therefore this approah is notappropriate for the inlusion of higher-order �h terms. For those ontributions, a modi�edsmoothing sheme needs to be developed.3.2 The relation between smoothing and amplitudedampingFinite temperature and sattering lead to �nite widths of the individual energy levels. Thee�et is equivalent to a onvolution of the Æ-funtions onstituting the level density withthe line shape indued by temperature and impurity e�ets. This setion disusses from amore mathematial point of view how this onvolution integral an be implemented in thetrae formula. The main result is Eq. (3.18), whih states a one-to-one relation betweenline shapes and amplitude damping funtions.The general form of a trae formula is given byÆg = X� A�(E) eiS�(E)�h �i�� �2 ; (3.6)where � is a one-dimensional lassi�ation of the lassial periodi orbits. If there is ageneralized energy e(E), and funtions G(�; E) and ~�(G), whih ful�llS�(E)�h � ���2 = eG� ~�(G) ; (3.7)the trae formula an be rewritten asÆg = XG A2(e;G) eieG : (3.8)For the last step it was assumed that every orbit is uniquely determined by its value of G.By resaling, G 2 IN an always be obtained; the resaling fators should be inluded in



3.2 The relation between smoothing and amplitude damping 19A2(e;G). The most simple situation is that A2 fatorizes in terms depending only on thegeneralized energy e and the lassi�ation variable G:A2(e;G) = AG(G)Ae(e) : (3.9)Approximating Eq. (3.8) by an integralÆg � Ae(e)Z AG(G) eieG dG : (3.10)gives (apart from normalization onstants) the osillating part of the level density Æg asthe Fourier transform of AG(G):Æg(e) � p2� Ae(e) F [AG(G)℄ : (3.11)The Fourier transform is denoted byF [AG(G)℄ := 1p2� Z AG(G)eieG dG : (3.12)Using the well-known folding theorem, an arbitrary window funtion F (G) leads toZ F (G)A2(e;G) eieG dG � Æg(e) � f(e) : (3.13)Here f(e) = F [F (G)℄ denotes the Fourier transform of F (G) and \�" stands for theonvolution integral. ThereforeÆgF :=X� F (G)A�(E) eiS�(E)�h �i�� �2 � Æg(e) � f(e) ; (3.14)where ÆgF denotes the trae formula with damped amplitudes. This relation shows thatfolding the semilassial level density with a smoothing funtion f(e) is equivalent to amultipliation of the amplitudes with a window funtion F (G). Unfortunately the restri-tions of Eqs. (3.7) and (3.9) are quite severe and often prevent the appliation of Eq. (3.14).With two additional approximations these restritions an be relaxed.In the generi situation Eq. (3.9) is violated and only the ommon dependene of theamplitudes on e an be separated out:A2(e;G) = AG(e;G) Ae(e) : (3.15)In this ase Eq. (3.14) is still a good approximation if the variation of AG(e;G) in eis suÆiently slow. Denoting the harateristi width of f(e) with , this means thatAG(e;G) has to be nearly onstant over a region  in e.If, on the other hand, there are no funtions e(E) and G(E;�) that ful�ll Eq. (3.7), a loalexpansion of the ation S in powers of e an be used:S�h = S(e0)�h + G(e0) (e � e0) + O(e� e0)2 : (3.16)



20 Chapter 3: Smoothing quantum osillationsIf this approximation is valid in a region in e that is wider than the typial width  of thesmoothing funtion, Eq. (3.14) still holds. In the general ase G is therefore given by the�rst derivative of the lassial ation with respet to e:G(E) = 1�h dSde ����E : (3.17)With e = E, �hG is the period T of the orbit, so that �hG is referred to as the quasiperiod. Forsystems with onstant absolute veloity along the orbit (this holds espeially for billiards),the hoie e = k leads todSde = dSdE dEdk = T � k�h2m = �hL ;where L is the geometrial orbit length.Putting all approximations together, it was shown that damping the amplitudes in thetrae formula with a window funtion F (G) results in an approximation for the leveldensity folded with the Fourier transform of F (G):ÆgF � f(e) � Æg : (3.18)This is the main result of this setion. Eq. (3.18) holds if the onditionsS � S(e0) +G(e0) (e � e0) (3.19)and A2(e;G) � onst (3.20)are ful�lled in a region wider than the typial width  of the smoothing funtion. Theseonditions depend mainly on the behavior of the ations and amplitudes of the orbits. Inorder to math them, a well-adapted hoie of the generalized energy is essential. Note thatfor narrow smoothing funtions (small ), the onditions are less restritive. Therefore,using Eq. (3.18) is often justi�ed for a full quantization, whereas for the alulation of thegross-shell struture the onditions Eqs. (3.19) and (3.20) put tight limits on the use ofthe amplitude damping ansatz { whih might seem ounter-intuitive at �rst sight. Sineevery orbit is uniquely determined by its value of G, and G should be suÆiently smoothin pratial appliations, the amplitude damping sheme may not depend expliitly onthe repetition number of the orbit. For most of the the appliations of Eq. (3.18) in thepresent work this limitation will be irrelevant. Note, however, that for the damping shemeommonly used for the free 2DEG (ompare to hapter 6), Eq. (3.18) does not apply.A simple example might be helpful to illustrate the result. Pure billiard systems are thosewhere the the ation along the orbits sales with the wave number: S = �hk �L, and L, thegeometri orbit length, is independent of the energy. Settinge(E) = k =r2mE�h2 and G(�) = L ; (3.21)Eq. (3.19) is ful�lled trivially. If Eq. (3.20) is also mathed, then the use of a windowfuntion F depending on the orbit length L is equivalent to a folding of the level density



3.3 Smoothing beyond the leading order in �h 21in k. Evaluating the trae formula with a Gaussian depending on the orbit length L aswindow funtion yields the level density folded with a Gaussian in k. This is the tehniqueommonly pratied for the omputation of trae formulas for billiard systems. Eq. (3.18)is somewhat more general, sine it is not restrited to billiard systems nor to speialwindow funtions.The use of Eq. (3.18) is very onvenient. Its range of validity an easily be heked usingEqs. (3.19) and (3.20). Furthermore, there is no general limitation of its appliability tothe leading order in �h. In the following setion Eq. (3.18) will be modi�ed so that it andeal with two �h orretions whih our in the disk billiard.3.3 Smoothing beyond the leading order in �hThe mirosopi ansatz for the inlusion of sattering and �nite temperature in the traeformula is, as already pointed out, limited to the ontributions of leading order in �h.It is therefore questionable to use this smoothing sheme for higher-order �h terms likebifurations or grazing, sine thereby the inuene of the orretions on the smoothingis negleted. The examination of the impat of higher-order �h orretions thus demandsa generalized smoothing sheme whih is appliable to the relevant �h orretions. Butjust as the inlusion of �h orretions neessitates an adaption to the smoothing sheme,so does the exlusion thereof. This omes about as omitting �h orretions does not onlylead to missing terms in the trae sum, but also renders the inlusion of the smoothinginaurate. A way to distinguish these two e�ets is desired.A omplete inlusion of seond leading order �h e�ets in the mirosopi alulation ofSet. 3.1 requires the derivation of the trae formula itself to seond order. This taskis, as already pointed out, both numerially and analytially so involved that it rendersthe semilassial approah useless for pratial appliations. This work therefore followsa di�erent approah, namely to replae the mirosopi approah by the formulas statingthe equivalene between smoothing and amplitude damping. The latter formulae shall befound muh easier to generalize.Along this path, the following setion derives expliit amplitude damping formulas appli-able to two kinds of higher-order �h orretions, namely bifurations and grazing. Theansatz is, however, not restrited to these spei� ases but an be used to derive analogousformulae for a large lass of orretions.After that, Se. 3.3.2 will introdue the folding approah, a simple numerial shemeutting down the inuene of higher-order �h ontributions on the smoothing proedure.This method does not rely on the knowledge of the orretion terms, so that it makes theseparation of the two ontributions of �h orretions to the trae formula disussed abovepossible.3.3.1 Inluding osillating amplitudesThe general proedure to implement smoothing in trae formulae has been derived inSe. 3.2. The main result is restated here in a notation onvenient for a generalization:



22 Chapter 3: Smoothing quantum osillationsFor an energy variable e(E) and a trae formulaÆg = Im"X� A�(e) eix�(e)# = X� A�(e) sin[x�(e)℄ ; (3.22)the smoothing, i. e. the onvolution with the line shape funtion f(e), an be approximatedby damping the semilassial amplitudes with a window funtion F (T�):ÆgF = X� A�(e)F (T�) sin[x�(e)℄ � f(e) � Æg : (3.23)This approximation is only valid for slowly varying real amplitudes. The implementationof two kinds of �h orretions to the trae formula for the disk billiard, namely tangent bi-furations and grazing, will lead to osillating amplitudes. This motivates a generalizationof Eq. (3.23) to osillating real and omplex amplitudes.3.3.1.1 Osillating real amplitudesAny real amplitude A�(e) an be written asA�(e) = M�(e) � os[��(e)℄ ; (3.24)where �(e) is monotonous in e and M(e) is real and does not hange sign. Inserting thisin Eq. (3.22) and usingsin(x) os(�) = 12 [sin(x� �) + sin(x +�)℄ ; (3.25)the two terms an individually be treated aording to Eq. (3.23). This leads to thefollowing smoothing sheme generally appliable to osillating real amplitudes:ÆgF = X� M� � �F os(��) sin(x�) + �F sin(��) os(x�)�= X� A� �F sin(x�) +X� �F M� sin(��) os(x�) ; (3.26)where �F = F+ + F�2 ; �F = F+ � F�2 ;F+ = F (x0 + �0) ; F� = F (x0 � �0) : (3.27)The dashes denote the derivatives with respet to e. For slowly osillating amplitudes(�0 � x0) the seond term in Eq. (3.26) is negligible, whereas the �rst term reproduesthe previous result for non-osillating amplitudes Eq. (3.14). The seond term gives aorretion depending mainly on �0, i. e. the frequeny of the amplitude osillation. Asexpeted, this orretion is large for rapidly osillating amplitudes.



3.3 Smoothing beyond the leading order in �h 233.3.1.2 Speial ase: Tangent bifurationsThe uniform approximation of the tangent bifuration aording to Eqs. (B.8) and (B.7)leads to the Airy funtion as semilassial amplitude. For this speial aseÆg =X� Ai(y�) sin(x�) (3.28)one gets, using Eq. (3.26),ÆgF =X� � �F Ai(y�) sin(x�) + �FBi(y�) os(x�)� : (3.29)The frequeny �0 an be expressed as�0(e) = Ai(e)Bi0(e) � Ai0(e)Bi(e)Ai(e)2 +Bi(e)2 � y0 : (3.30)These formulas are used in Se. 4.3.3 on the treatment of the tangent bifurations in thedisk billiard. There, the orretions to the smoothing sheme (i. e. mainly the seondterm of Eq. (3.29)) will be seen to be omparable to the orretions stemming from theuniform treatment of the bifurations. This shows that the orret implementation of thesmoothing is vital for an examination of higher-order �h ontributions to the trae formula.3.3.1.3 Osillating omplex amplitudesFor osillating omplex amplitudes, Eq. (3.26) an be applied to the real and the imaginarypart of A� separately, so that no speial treatment has to be introdued. For the speialase that the amplitude an be written asA�(e) =M�(e) � expfi��(e)g ; (3.31)the implementation of smoothing is simply given byÆgF =X� M� F+ sin(x� +��) : (3.32)Note that now both the osillating term and the damping via the window funtion F onlydepend on x� +��. This is similar to the original formula for slowly varying amplitudesEq. (3.23).3.3.1.4 Speial ase: GrazingEq. (3.32) an be used for the Fresnel integrals ourring in grazing orretions (see, e. g.,Se. 4.3.4). Setting~I(y) = �C(y)� 12�+ i�S(y) � 12� ; (3.33)



24 Chapter 3: Smoothing quantum osillations~I an be written aording to Eq. (3.31). Using Eq. (3.32), some straight-forward alu-lations show that the smoothing of a trae formulaÆg = Im"X� [C(y�) + i�S(y�)℄ eix�# (3.34)an be implemented byÆgF =X� �F+ [C(y) sin(x) + �S(y) os(x)℄ + F (x0)� F+p2 sin�x + ��4�� ; (3.35)where � = �1 and � = �=2 � y2. Note that now, in ontrast to Eq. (3.32), a orretionterm with an amplitude depending mainly on �0 shows up.3.3.2 The folding approahThe smoothing proedure presented above an only be applied if the �h orretions an bealulated expliitly. But, as already pointed out, also the negleted (and thus unknown)orretions a�et the validity of the amplitude damping ansatz for the implementationof smoothing. This is espeially lear for bifurations: Negleting bifurations leads todiverging Gutzwiller amplitudes. In the viinity of the bifuration ondition Eq. (3.20)of Se. 3.2 is thus violated. The onvolution of the trae sum with the line shape istherefore no longer equivalent to the ommon amplitude damping. Sine at bifurationsthe ontribution to the trae sum is lower in powers of �h, the mirosopi approah alsofails, as the leading-order assumption is not ful�lled.The simplest tehnique to separate the diret inuene of higher-order �h-terms on the traeformula from the e�ets they have on the implementation of smoothing is to perform thesmoothing exatly by a numerial onvolution with the appropriate line shape. With theplausible assumption that higher-order �h ontributions do not inuene the line shape,this an be taken aording to Se. 3.2 as the Fourier transform of the amplitude dampingfuntion. This numerial proedure to implement smoothing in the trae formula will bereferred to as folding approah.Both the example of the disk billiard in hapter 4 and the magnetoondutane of thehannel with antidots in hapter 7 will show that for systems where many orbits on-tribute, the dominating e�et of bifurations is not given by the additional terms theyintrodue in the trae formula, but stems from their inuene on the implementation ofsmoothing. Negleting the �h-orretions of the bifurations in trae formulae, but orretlyimplementing the smoothing, will prove to be a good approximation in these ases.3.4 Smoothing for other reasonsEven for systems where no experimental smoothing is relevant,2 the implementation of asmoothing sheme as presented above might be useful.A �rst motivation is given by the mathematial properties of semilassial trae formulae.In the form used in this work, they exhibit non-trivial onvergene properties. From a2See for example the disk billiard in hapter 4, whih is only ompared to the pure quantum result.



3.4 Smoothing for other reasons 25mathematial point of view they annot be summed up straight-forwardly. This is alreadylear from the fat that the quantum mehanial single partile level densities are sumsof Æ-funtions. These are not funtions in a mathematial sense, but distributions, whihneed speial treatment. For various attempts establishing proper resummation shemes oftrae formulae see Refs. [111, 101℄.If one onsiders, on the other hand, the smoothed level density, the mathematial problemsvanish to a great extent. Calulating the trae formula without smoothing as the limit ofvanishing smoothing width allows to ignore the onvergene properties of the trae sumswithin the ontext of this work.Another appliation of smoothing is to ope with the tehnial limits of a numerial evalu-ation of the trae formula. Eq. (2.14) onsists of a sum over all lassial periodi orbits ofa system, usually in�nitely many. In a numerial approah, this sum has to be trunated.The impat of this trunation an be ontrolled aording to Se. 3.2 by identifying theut-o� with the window funtion F (G). Eq. (3.18) thus allows a preise estimate of theerror introdued by the trunation in a numerial evaluation.It is however often more e�etive to use the relation between smoothing and amplitudedamping in the other diretion: Given the tolerated numerial e�ort, the question is how tohoose the orbits whih are inluded in the numerial evaluation. This problem is equiva-lent to the standard problem of Fourier spetrosopy, namely how to get the best spetrumfrom a �nite range of measured intensities. There, speial window funtions in analogy toSe. 3.2 are used. There is a large variety of reasonable window-funtions at hand. For adetailed disussion see Ref. [43℄. There is no optimal window funtion for all appliations,as there is a fundamental trade-o� between the width of the peaks and the intensity ofspurious sidebands. For the evaluation of the trae formula it is usually onvenient to usewindow funtions whih already inlude the (unavoidable) trunation. Choosing a F (G)whih is nonzero only in a �nite range automatially ontrols the trunation error. In thiswork, a triangular window funtion is used.The last reason for the implementation of a smoothing sheme like Eq. (3.18) is loselyrelated to the problem of the numerial evaluation of trae formulae mentioned above.For any given window funtion (whih may be only due to the trunation sheme imple-mented), the expeted line width and line shape an be alulated. This method providesthe basis for a very preise numerial alulation of the semilassial single-partile en-ergies. For details see Se. 4.6 of Ref. [1℄. In Ref. [2℄ this ansatz was used to prove theidentity of the EBK and the Gutzwiller result for the disk billiard numerially.




