Chapter 3

Smoothing quantum oscillations

This chapter 1s devoted to the inclusion of finite temperature and impurity scatter-
ing wn semiclassical approzimations. The common microscopic approach s outlined,
and another, more mathematically oriented ansatz is presented. The comparison of
the two procedures allows an extension of the smoothing formalism to higher-order
contributions in h. This section provides some of the technical details which will be

important when considering hi corrections in the subsequent chapters.
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The quantum mechanical level density of pure systems is given by a sum of é-functions
centered at the eigenenergies. Experiments on mesoscopic systems, however, are performed
at finite temperatures. Furthermore, the samples are not ideally clean, but incorporate
impurities (contaminations, lattice defects, etc.). These effects broaden the levels to a
finite width, thus smoothing the level density. If the line width is smaller than the mean
level spacing, the individual quantum states can still be observed. This situation will
be referred to as full quantization. For larger smoothing widths, i.e. line widths larger
that the mean level spacing, the individual levels cannot be resolved. This is called the
coarse-grained level density in the following.

Only for very peculiar systems, like the harmonic oscillator, are the levels regularly dis-
tributed in energy. The generic situation for finite fermion systems are groups of levels,
separated by gaps larger than the mean level spacing. These groups are called shells ac-
cording to the canonical example of the electronic s-, p-, d-, ... shells in atoms. This shell
structure survives even for strong broadening of the lines. It is therefore often the only
experimentally observable reminiscence of the quantum nature of a sample. Those shell
effects are a typical feature of finite fermion systems. Prominent examples include the
abundance spectra of alkali clusters [50, 26] or the stability of nuclei [117].

This chapter deals with techniques that include the effects which lead to finite line widths in
the semiclassical trace formula. The common ansatz starts with including the microscopic
effects on a quantum mechanical level and re-derives the semiclassical approximation along
the same line as calculating the original trace formula. The resulting expression differs
from the simple trace formula Eq. (2.14) by additional terms that damp the amplitudes
of the periodic orbit contributions.

In Sec. 3.2, an alternative ansatz is derived. The essential idea is to establish a formal
relation between line shapes and amplitude damping schemes. Provided the knowledge of
the correct line shape, this method can also be used for the calculation of the corresponding
amplitude damping factors.

In leading order of h, these two approaches lead of course to equivalent results. The second
technique, however, can be generalized to higher-order contributions. The idea exploited
in Sec. 3.3 is to replace the microscopic ansatz by the second approach if higher orders in
h are to be included. This will be of great importance for the examination of higher-order
contributions in & to the trace sum in the subsequent chapters.

A couple of nice side results from the inclusion of finite line widths in the trace formula
are discussed in Sec. 3.4.

3.1 The microscopic approach to smoothing

The general scheme how to include finite temperatures, impurity scattering, and related
effects on a microscopic level necessitates the re-derivation of the trace formula. After
incorporating the effect in the quantum mechanical calculation, e.g. by including weak
disorder or finite temperature by the appropriate ensemble averages, the Green’s func-
tions are replaced by their semiclassical approximations. Subsequent stationary phase
approximations lead to trace formulae similar to Eq. (2.14). This approach opens up the
possibility of a semiclassical calculation of line shapes and line widths. Note, however,
that despite recent progress [60] the quantum mechanical calculation of line shapes and
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1 Since the semiclassical approximation

line widths is still a mostly unsettled problem.
starts from the quantum formalism, this is equally true for for semiclassics. This work
is not intended to contribute to questions related to line shapes and relative amplitudes,
so that temperature and scattering will only be included along the simple lines outlined

below.

For the very low temperatures used in the measurement of mesoscopic semiconductor de-
vices, phonons (and their interaction with charge carriers) can be neglected. The only
relevant temperature-related effect concerning the level density stems from the Fermi dis-
tribution. For this situation, the inclusion of finite temperature on the oscillating part of
the level density is simply given by

saleT) = [ B sg(BT = 0) £(E -1, (3.1)

with the Fermi distribution function
1

f(E_u)zl—}—eXp(%)

(3.2)

The derivative of the Fermi distribution is strongly peaked around the Fermi energy pi, so
that Eq. (3.1) mainly introduces an energy average over a typical width of kgT'. Performing
this integration leads to an additional temperature-dependent factor R in the trace formula

Tho/TT

R(Tpo) = m . (33)

Here T, is the period of the orbit and 7p = fikpT/n defines the thermal cutoff time 77.
For a detailed derivation, see for example Refs. [96, 105, 100, 17].

The inclusion of impurities in semiclassical formulae is, even on an elementary level, much
more elaborate than including finite temperature. In the semiclassical picture, scattering
enters via three distinct effects:

1. The amplitudes of the periodic orbits are reduced due to the finite probability of
scattering out of the trajectory. This effect is relevant even for small impurity
concentrations.

2. New orbits which include scattering events (i.e. closed "hopping’ orbits from scat-
tering center to scattering center) occur. These orbits are for example responsible
for universal conductance fluctuations (UCF) and weak localization. This effect is
only relevant for sufficiently high concentrations of scatterers.

3. Scattering may introduce interference between otherwise coherent orbits (like in
degenerate orbit families).

In ballistic systems, the first of these effects dominates. Since scattering will only be
considered with respect to transport properties in later sections, the discussion about the
inclusion of the effects is postponed until then. Here only the main result of this analysis

! This applies especially to transport properties. So for example not even the amplitude of the Shubnikov-
de-Haas oscillations of the free 2DEG is understood theoretically [125].
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should be stated, namely that for ballistic systems the procedure is very similar to the
inclusion of finite temperatures. The effect of the scatterers can be approximated by a
damping factor F' depending exponentially on the orbit length

F(Ly,) = e Lre/(20 (3.4)

Here ¢ is the elastic mean-free path of the system and L, denotes the orbit length. For
billiards, where L,, = vpT},, this damping can also be expressed in terms of the scattering
time 7, by

F(Tyo) = e oo/, (3.5)

where the scattering time is related to the mobility p by 75 = m*p/e.

These two results establish a first connection between smoothing and amplitude damping,
a relation that will be examined more deeply in the following section. Please note that
the semiclassical inclusion of finite temperature and mean-free path is — just as the trace
formula itself — only correct up to leading order in h. Therefore this approach is not
appropriate for the inclusion of higher-order % terms. For those contributions, a modified
smoothing scheme needs to be developed.

3.2 The relation between smoothing and amplitude
damping

Finite temperature and scattering lead to finite widths of the individual energy levels. The
effect is equivalent to a convolution of the d-functions constituting the level density with
the line shape induced by temperature and impurity effects. This section discusses from a
more mathematical point of view how this convolution integral can be implemented in the
trace formula. The main result is Eq. (3.18), which states a one-to-one relation between

line shapes and amplitude damping functions.

The general form of a trace formula is given by

Sl“E) ki

bg = Y Ap(E)eTn i (3.6)
T

where I' is a one-dimensional classification of the classical periodic orbits. If there is a

generalized energy e(E), and functions G(I', E) and &(G), which fulfill

St(E)
h

—apg =G —5(G), (3.7)
the trace formula can be rewritten as

§g = > As(e,G)e 7. (3.8)
G

For the last step it was assumed that every orbit is uniquely determined by its value of G.
By rescaling, G € IN can always be obtained; the rescaling factors should be included in
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As(e, G). The most simple situation is that A, factorizes in terms depending only on the
generalized energy e and the classification variable G:

As(e,G) = Ag(G) Ac(e) . (3.9)

Approximating Eq. (3.8) by an integral
5g =~ Acle) /AG(G) Y dG . (3.10)

gives (apart from normalization constants) the oscillating part of the level density dg as
the Fourier transform of Ag(G):

Sgle) = V2r Acle) FlAc(@)]. (3.11)

The Fourier transform is denoted by
1 ,
FlAg(G)] := ——= [ Ag(G)e“ dG . 3.12
(46(@)) = 7= [ Aa(G)e (3.12)
Using the well-known folding theorem, an arbitrary window function F(G) leads to
/F(G) As(e. @) e Y dG ~ bg(e) * fle) . (3.13)

Here f(e) = F[F(G)] denotes the Fourier transform of F(G) and “x” stands for the

convolution integral. Therefore

Sp(E) . T

09" = F(G)Ar(E)e' n r% ~ dgle) * f(e) , (3.14)
r

where d¢gF denotes the trace formula with damped amplitudes. This relation shows that
folding the semiclassical level density with a smoothing function f(e) is equivalent to a
multiplication of the amplitudes with a window function F/(G). Unfortunately the restric-
tions of Eqgs. (3.7) and (3.9) are quite severe and often prevent the application of Eq. (3.14).
With two additional approximations these restrictions can be relaxed.

In the generic situation Eq. (3.9) is violated and only the common dependence of the
amplitudes on ¢ can be separated out:

As(e,G) = Agl(e, G) Acle) . (3.15)

In this case Eq. (3.14) is still a good approximation if the variation of Ag(e,G) in e
is sufficiently slow. Denoting the characteristic width of f(e) with v, this means that
Ag(e, G) has to be nearly constant over a region v in e.

If, on the other hand, there are no functions ¢(E) and G(E,T') that fulfill Eq. (3.7), a local

expansion of the action S in powers of ¢ can be used:

+ G(eg) (e —eg) + Ofe — e)? . (3.16)

g_ S(eo)
h h
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If this approximation is valid in a region in e that is wider than the typical width v of the
smoothing function, Eq. (3.14) still holds. In the general case G is therefore given by the
first derivative of the classical action with respect to e:

1dS
GE)= ——| . 3.17
(E) h de|p ( )
With e = F, hG is the period T of the orbit, so that AG is referred to as the quasiperiod. For
systems with constant absolute velocity along the orbit (this holds especially for billiards),
the choice e = k leads to

ds dS dE kh?
T aEa - Toa T

where L is the geometrical orbit length.

Putting all approximations together, it was shown that damping the amplitudes in the
trace formula with a window function F(G) results in an approximation for the level
density folded with the Fourier transform of F(G):

5gF =~ fle) xdg . (3.18)
This is the main result of this section. Eq. (3.18) holds if the conditions

S~ S(e) + Gley) (e =€) (3.19)
and

As(e, G) = const (3.20)

are fulfilled in a region wider than the typical width v of the smoothing function. These
conditions depend mainly on the behavior of the actions and amplitudes of the orbits. In
order to match them, a well-adapted choice of the generalized energy is essential. Note that
for narrow smoothing functions (small v), the conditions are less restrictive. Therefore,
using Eq. (3.18) is often justified for a full quantization, whereas for the calculation of the
gross-shell structure the conditions Egs. (3.19) and (3.20) put tight limits on the use of
the amplitude damping ansatz — which might seem counter-intuitive at first sight. Since
every orbit is uniquely determined by its value of G, and G should be sufficiently smooth
in practical applications, the amplitude damping scheme may not depend explicitly on
the repetition number of the orbit. For most of the the applications of Eq. (3.18) in the
present work this limitation will be irrelevant. Note, however, that for the damping scheme
commonly used for the free 2DEG (compare to chapter 6), Eq. (3.18) does not apply.

A simple example might be helpful to illustrate the result. Pure billiard systems are those
where the the action along the orbits scales with the wave number: S = fik- L, and L, the
geometric orbit length, is independent of the energy. Setting

2mE
Eq. (3.19) is fulfilled trivially. If Eq. (3.20) is also matched, then the use of a window

function F' depending on the orbit length L is equivalent to a folding of the level density
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in k. Evaluating the trace formula with a Gaussian depending on the orbit length L as
window function yields the level density folded with a Gaussian in k. This is the technique
commonly practiced for the computation of trace formulas for billiard systems. Eq. (3.18)
is somewhat more general, since it is not restricted to billiard systems nor to special
window functions.

The use of Eq. (3.18) is very convenient. Its range of validity can easily be checked using
Egs. (3.19) and (3.20). Furthermore, there is no general limitation of its applicability to
the leading order in /. In the following section Eq. (3.18) will be modified so that it can
deal with two h corrections which occur in the disk billiard.

3.3 Smoothing beyond the leading order in £

The microscopic ansatz for the inclusion of scattering and finite temperature in the trace
formula is, as already pointed out, limited to the contributions of leading order in .
It is therefore questionable to use this smoothing scheme for higher-order % terms like
bifurcations or grazing, since thereby the influence of the corrections on the smoothing
is neglected. The examination of the impact of higher-order h corrections thus demands
a generalized smoothing scheme which is applicable to the relevant % corrections. But
just as the inclusion of h corrections necessitates an adaption to the smoothing scheme,
so does the exclusion thereof. This comes about as omitting % corrections does not only
lead to missing terms in the trace sum, but also renders the inclusion of the smoothing
inaccurate. A way to distinguish these two effects is desired.

A complete inclusion of second leading order % effects in the microscopic calculation of
Sect. 3.1 requires the derivation of the trace formula itself to second order. This task
is, as already pointed out, both numerically and analytically so involved that it renders
the semiclassical approach useless for practical applications. This work therefore follows
a different approach, namely to replace the microscopic approach by the formulas stating
the equivalence between smoothing and amplitude damping. The latter formulae shall be
found much easier to generalize.

Along this path, the following section derives explicit amplitude damping formulas appli-
cable to two kinds of higher-order % corrections, namely bifurcations and grazing. The
ansatz is, however, not restricted to these specific cases but can be used to derive analogous
formulae for a large class of corrections.

After that, Sec. 3.3.2 will introduce the folding approach, a simple numerical scheme
cutting down the influence of higher-order % contributions on the smoothing procedure.
This method does not rely on the knowledge of the correction terms, so that it makes the
separation of the two contributions of A corrections to the trace formula discussed above
possible.

3.3.1 Including oscillating amplitudes

The general procedure to implement smoothing in trace formulae has been derived in
Sec. 3.2. The main result is restated here in a notation convenient for a generalization:
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For an energy variable e¢(E) and a trace formula

dg = Im

ZAp(e) eiml'(e)] = ZAp(e) sin[zr(e)] , (3.22)
T r

the smoothing, i. e. the convolution with the line shape function f(e), can be approximated
by damping the semiclassical amplitudes with a window function F(7T):

sgf = Z Ar(e) F(Tr) sin[zr(e)] ~ f(e)*dg . (3.23)

This approximation is only valid for slowly varying real amplitudes. The implementation
of two kinds of & corrections to the trace formula for the disk billiard, namely tangent bi-
furcations and grazing, will lead to oscillating amplitudes. This motivates a generalization
of Eq. (3.23) to oscillating real and complex amplitudes.

3.3.1.1 Oscillating real amplitudes

Any real amplitude Ar(e) can be written as
Ar(e) = Mr(e) - cos[Or(e)] . (3.24)

where O(e) is monotonous in e and M (e) is real and does not change sign. Inserting this
in Eq. (3.22) and using

sin(z) cos(0) = %[sin(m — 0) +sin(z + 0)], (3.25)

the two terms can individually be treated according to Eq. (3.23). This leads to the
following smoothing scheme generally applicable to oscillating real amplitudes:

sgf = ZMF [F cos(Or) sin(zr) + AF sin(Or) cos(zr)]
r

= ZAFF sin(zr) + ZAF Mt sin(®r) cos(zr) , (3.26)
r r
where
_ Ft+F~ Ft—F~
F = il i AP = ——;
2 2
Fr=F@'+0) ; F~T =F(z'-0). (3.27)

The dashes denote the derivatives with respect to e. For slowly oscillating amplitudes
(0" <« 2') the second term in Eq. (3.26) is negligible, whereas the first term reproduces
the previous result for non-oscillating amplitudes Eq. (3.14). The second term gives a
correction depending mainly on ©', i.e. the frequency of the amplitude oscillation. As
expected, this correction is large for rapidly oscillating amplitudes.



3.3 SMOOTHING BEYOND THE LEADING ORDER IN h 23

3.3.1.2 Special case: Tangent bifurcations

The uniform approximation of the tangent bifurcation according to Eqs. (B.8) and (B.7)
leads to the Airy function as semiclassical amplitude. For this special case

dg = Z Ai(yr) sin(zr) (3.28)
r

one gets, using Eq. (3.26),

sgf' = Z [F’Ai(yp) sin(zr) + AFBi(yr) cos(mp)] . (3.29)
N

The frequency ©' can be expressed as

Ai(e) Bi'(¢) — Ai'(e) Bie)

o) = LT Bie)?

(3.30)

These formulas are used in Sec. 4.3.3 on the treatment of the tangent bifurcations in the
disk billiard. There, the corrections to the smoothing scheme (i.e. mainly the second
term of Eq. (3.29)) will be seen to be comparable to the corrections stemming from the
uniform treatment of the bifurcations. This shows that the correct implementation of the
smoothing is vital for an examination of higher-order A contributions to the trace formula.

3.3.1.3 Oscillating complex amplitudes
For oscillating complex amplitudes, Eq. (3.26) can be applied to the real and the imaginary
part of Ar separately, so that no special treatment has to be introduced. For the special
case that the amplitude can be written as

Ar(e) = Mr(e) - exp{iOr(e)} , (3.31)

the implementation of smoothing is simply given by

sgf = ZMF F7 sin(zr + Or) . (3.32)
N

Note that now both the oscillating term and the damping via the window function F' only
depend on zp 4+ Orp. This is similar to the original formula for slowly varying amplitudes
Eq. (3.23).

3.3.1.4 Special case: Grazing

Eq. (3.32) can be used for the Fresnel integrals occurring in grazing corrections (see, e. g.,
Sec. 4.3.4). Setting

i = (ct)-3) +i (s -3) . (3.33)
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I can be written according to Eq. (3.31). Using Eq. (3.32), some straight-forward calcu-
lations show that the smoothing of a trace formula

69 =Im [Z [Clyr) + iaS(yr)] €T (3.34)

can be implemented by

F= + y) sin(x aS(y) cos(x —F(:E')_FH_ sin (@ az
5o —;<F (€l sin(e) + as(y) costel] + LT () ) 339

where « = £1 and ® = 7/2 - y2. Note that now, in contrast to Eq. (3.32), a correction
term with an amplitude depending mainly on ©’ shows up.

3.3.2 The folding approach

The smoothing procedure presented above can only be applied if the % corrections can be
calculated explicitly. But, as already pointed out, also the neglected (and thus unknown)
corrections affect the validity of the amplitude damping ansatz for the implementation
of smoothing. This is especially clear for bifurcations: Neglecting bifurcations leads to
diverging Gutzwiller amplitudes. In the vicinity of the bifurcation condition Eq. (3.20)
of Sec. 3.2 is thus violated. The convolution of the trace sum with the line shape is
therefore no longer equivalent to the common amplitude damping. Since at bifurcations
the contribution to the trace sum is lower in powers of #, the microscopic approach also
fails, as the leading-order assumption is not fulfilled.

The simplest technique to separate the direct influence of higher-order A-terms on the trace
formula from the effects they have on the implementation of smoothing is to perform the
smoothing exactly by a numerical convolution with the appropriate line shape. With the
plausible assumption that higher-order A contributions do not influence the line shape,
this can be taken according to Sec. 3.2 as the Fourier transform of the amplitude damping
function. This numerical procedure to implement smoothing in the trace formula will be
referred to as folding approach.

Both the example of the disk billiard in chapter 4 and the magnetoconductance of the
channel with antidots in chapter 7 will show that for systems where many orbits con-
tribute, the dominating effect of bifurcations is not given by the additional terms they
introduce in the trace formula, but stems from their influence on the implementation of
smoothing. Neglecting the Ai-corrections of the bifurcations in trace formulae, but correctly
implementing the smoothing, will prove to be a good approximation in these cases.

3.4 Smoothing for other reasons

. . . 2 . .
Even for systems where no experimental smoothing is relevant.,” the implementation of a
smoothing scheme as presented above might be useful.

A first motivation is given by the mathematical properties of semiclassical trace formulae.
In the form used in this work, they exhibit non-trivial convergence properties. From a

?See for example the disk billiard in chapter 4, which is only compared to the pure quantum result.
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mathematical point of view they cannot be summed up straight-forwardly. This is already
clear from the fact that the quantum mechanical single particle level densities are sums
of d-functions. These are not functions in a mathematical sense, but distributions, which
need special treatment. For various attempts establishing proper resummation schemes of
trace formulae see Refs. [111, 101].

If one considers, on the other hand, the smoothed level density, the mathematical problems
vanish to a great extent. Calculating the trace formula without smoothing as the limit of
vanishing smoothing width allows to ignore the convergence properties of the trace sums
within the context of this work.

Another application of smoothing is to cope with the technical limits of a numerical evalu-
ation of the trace formula. Eq. (2.14) consists of a sum over all classical periodic orbits of
a system, usually infinitely many. In a numerical approach, this sum has to be truncated.
The impact of this truncation can be controlled according to Sec. 3.2 by identifying the
cut-off with the window function F(G). Eq. (3.18) thus allows a precise estimate of the
error introduced by the truncation in a numerical evaluation.

It is however often more effective to use the relation between smoothing and amplitude
damping in the other direction: Given the tolerated numerical effort, the question is how to
choose the orbits which are included in the numerical evaluation. This problem is equiva-
lent to the standard problem of Fourier spectroscopy, namely how to get the best spectrum
from a finite range of measured intensities. There, special window functions in analogy to
Sec. 3.2 are used. There is a large variety of reasonable window-functions at hand. For a
detailed discussion see Ref. [43]. There is no optimal window function for all applications,
as there is a fundamental trade-off between the width of the peaks and the intensity of
spurious sidebands. For the evaluation of the trace formula it is usually convenient to use
window functions which already include the (unavoidable) truncation. Choosing a F'(G)
which is nonzero only in a finite range automatically controls the truncation error. In this
work, a triangular window function is used.

The last reason for the implementation of a smoothing scheme like Eq. (3.18) is closely
related to the problem of the numerical evaluation of trace formulae mentioned above.
For any given window function (which may be only due to the truncation scheme imple-
mented), the expected line width and line shape can be calculated. This method provides
the basis for a very precise numerical calculation of the semiclassical single-particle en-
ergies. For details see Sec. 4.6 of Ref. [1]. In Ref. [2] this ansatz was used to prove the
identity of the EBK and the Gutzwiller result for the disk billiard numerically.






