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16 Chapter 3: Smoothing quantum os
illationsThe quantum me
hani
al level density of pure systems is given by a sum of Æ-fun
tions
entered at the eigenenergies. Experiments on mesos
opi
 systems, however, are performedat �nite temperatures. Furthermore, the samples are not ideally 
lean, but in
orporateimpurities (
ontaminations, latti
e defe
ts, et
.). These e�e
ts broaden the levels to a�nite width, thus smoothing the level density. If the line width is smaller than the meanlevel spa
ing, the individual quantum states 
an still be observed. This situation willbe referred to as full quantization. For larger smoothing widths, i. e. line widths largerthat the mean level spa
ing, the individual levels 
annot be resolved. This is 
alled the
oarse-grained level density in the following.Only for very pe
uliar systems, like the harmoni
 os
illator, are the levels regularly dis-tributed in energy. The generi
 situation for �nite fermion systems are groups of levels,separated by gaps larger than the mean level spa
ing. These groups are 
alled shells a
-
ording to the 
anoni
al example of the ele
troni
 s-, p-, d-, . . . shells in atoms. This shellstru
ture survives even for strong broadening of the lines. It is therefore often the onlyexperimentally observable reminis
en
e of the quantum nature of a sample. Those shelle�e
ts are a typi
al feature of �nite fermion systems. Prominent examples in
lude theabundan
e spe
tra of alkali 
lusters [50, 26℄ or the stability of nu
lei [117℄.This 
hapter deals with te
hniques that in
lude the e�e
ts whi
h lead to �nite line widths inthe semi
lassi
al tra
e formula. The 
ommon ansatz starts with in
luding the mi
ros
opi
e�e
ts on a quantum me
hani
al level and re-derives the semi
lassi
al approximation alongthe same line as 
al
ulating the original tra
e formula. The resulting expression di�ersfrom the simple tra
e formula Eq. (2.14) by additional terms that damp the amplitudesof the periodi
 orbit 
ontributions.In Se
. 3.2, an alternative ansatz is derived. The essential idea is to establish a formalrelation between line shapes and amplitude damping s
hemes. Provided the knowledge ofthe 
orre
t line shape, this method 
an also be used for the 
al
ulation of the 
orrespondingamplitude damping fa
tors.In leading order of �h, these two approa
hes lead of 
ourse to equivalent results. The se
ondte
hnique, however, 
an be generalized to higher-order 
ontributions. The idea exploitedin Se
. 3.3 is to repla
e the mi
ros
opi
 ansatz by the se
ond approa
h if higher orders in�h are to be in
luded. This will be of great importan
e for the examination of higher-order
ontributions in �h to the tra
e sum in the subsequent 
hapters.A 
ouple of ni
e side results from the in
lusion of �nite line widths in the tra
e formulaare dis
ussed in Se
. 3.4.3.1 The mi
ros
opi
 approa
h to smoothingThe general s
heme how to in
lude �nite temperatures, impurity s
attering, and relatede�e
ts on a mi
ros
opi
 level ne
essitates the re-derivation of the tra
e formula. Afterin
orporating the e�e
t in the quantum me
hani
al 
al
ulation, e. g. by in
luding weakdisorder or �nite temperature by the appropriate ensemble averages, the Green's fun
-tions are repla
ed by their semi
lassi
al approximations. Subsequent stationary phaseapproximations lead to tra
e formulae similar to Eq. (2.14). This approa
h opens up thepossibility of a semi
lassi
al 
al
ulation of line shapes and line widths. Note, however,that despite re
ent progress [60℄ the quantum me
hani
al 
al
ulation of line shapes and



3.1 The mi
ros
opi
 approa
h to smoothing 17line widths is still a mostly unsettled problem.1 Sin
e the semi
lassi
al approximationstarts from the quantum formalism, this is equally true for for semi
lassi
s. This workis not intended to 
ontribute to questions related to line shapes and relative amplitudes,so that temperature and s
attering will only be in
luded along the simple lines outlinedbelow.For the very low temperatures used in the measurement of mesos
opi
 semi
ondu
tor de-vi
es, phonons (and their intera
tion with 
harge 
arriers) 
an be negle
ted. The onlyrelevant temperature-related e�e
t 
on
erning the level density stems from the Fermi dis-tribution. For this situation, the in
lusion of �nite temperature on the os
illating part ofthe level density is simply given byÆg(�; T ) = Z 10 dE Æg(E; T = 0) f 0(E � �) ; (3.1)with the Fermi distribution fun
tionf(E � �) = 11 + exp�E��kBT � : (3.2)The derivative of the Fermi distribution is strongly peaked around the Fermi energy �, sothat Eq. (3.1) mainly introdu
es an energy average over a typi
al width of kBT . Performingthis integration leads to an additional temperature-dependent fa
tor R in the tra
e formulaR(Tpo) = Tpo=�Tsinh(Tpo=�T ) : (3.3)Here Tpo is the period of the orbit and �T = �hkBT=� de�nes the thermal 
uto� time �T .For a detailed derivation, see for example Refs. [96, 105, 100, 17℄.The in
lusion of impurities in semi
lassi
al formulae is, even on an elementary level, mu
hmore elaborate than in
luding �nite temperature. In the semi
lassi
al pi
ture, s
atteringenters via three distin
t e�e
ts:1. The amplitudes of the periodi
 orbits are redu
ed due to the �nite probability ofs
attering out of the traje
tory. This e�e
t is relevant even for small impurity
on
entrations.2. New orbits whi
h in
lude s
attering events (i. e. 
losed 'hopping' orbits from s
at-tering 
enter to s
attering 
enter) o

ur. These orbits are for example responsiblefor universal 
ondu
tan
e 
u
tuations (UCF) and weak lo
alization. This e�e
t isonly relevant for suÆ
iently high 
on
entrations of s
atterers.3. S
attering may introdu
e interferen
e between otherwise 
oherent orbits (like indegenerate orbit families).In ballisti
 systems, the �rst of these e�e
ts dominates. Sin
e s
attering will only be
onsidered with respe
t to transport properties in later se
tions, the dis
ussion about thein
lusion of the e�e
ts is postponed until then. Here only the main result of this analysis1This applies espe
ially to transport properties. So for example not even the amplitude of the Shubnikov-de-Haas os
illations of the free 2DEG is understood theoreti
ally [125℄.



18 Chapter 3: Smoothing quantum os
illationsshould be stated, namely that for ballisti
 systems the pro
edure is very similar to thein
lusion of �nite temperatures. The e�e
t of the s
atterers 
an be approximated by adamping fa
tor F depending exponentially on the orbit lengthF (Lpo) = e�Lpo=(2`) : (3.4)Here ` is the elasti
 mean-free path of the system and Lpo denotes the orbit length. Forbilliards, where Lpo = vFTpo, this damping 
an also be expressed in terms of the s
atteringtime �s byF (Tpo) = e�Tpo=(2�s) ; (3.5)where the s
attering time is related to the mobility � by �s = m?�=e.These two results establish a �rst 
onne
tion between smoothing and amplitude damping,a relation that will be examined more deeply in the following se
tion. Please note thatthe semi
lassi
al in
lusion of �nite temperature and mean-free path is { just as the tra
eformula itself { only 
orre
t up to leading order in �h. Therefore this approa
h is notappropriate for the in
lusion of higher-order �h terms. For those 
ontributions, a modi�edsmoothing s
heme needs to be developed.3.2 The relation between smoothing and amplitudedampingFinite temperature and s
attering lead to �nite widths of the individual energy levels. Thee�e
t is equivalent to a 
onvolution of the Æ-fun
tions 
onstituting the level density withthe line shape indu
ed by temperature and impurity e�e
ts. This se
tion dis
usses from amore mathemati
al point of view how this 
onvolution integral 
an be implemented in thetra
e formula. The main result is Eq. (3.18), whi
h states a one-to-one relation betweenline shapes and amplitude damping fun
tions.The general form of a tra
e formula is given byÆg = X� A�(E) eiS�(E)�h �i�� �2 ; (3.6)where � is a one-dimensional 
lassi�
ation of the 
lassi
al periodi
 orbits. If there is ageneralized energy e(E), and fun
tions G(�; E) and ~�(G), whi
h ful�llS�(E)�h � ���2 = eG� ~�(G) ; (3.7)the tra
e formula 
an be rewritten asÆg = XG A2(e;G) eieG : (3.8)For the last step it was assumed that every orbit is uniquely determined by its value of G.By res
aling, G 2 IN 
an always be obtained; the res
aling fa
tors should be in
luded in



3.2 The relation between smoothing and amplitude damping 19A2(e;G). The most simple situation is that A2 fa
torizes in terms depending only on thegeneralized energy e and the 
lassi�
ation variable G:A2(e;G) = AG(G)Ae(e) : (3.9)Approximating Eq. (3.8) by an integralÆg � Ae(e)Z AG(G) eieG dG : (3.10)gives (apart from normalization 
onstants) the os
illating part of the level density Æg asthe Fourier transform of AG(G):Æg(e) � p2� Ae(e) F [AG(G)℄ : (3.11)The Fourier transform is denoted byF [AG(G)℄ := 1p2� Z AG(G)eieG dG : (3.12)Using the well-known folding theorem, an arbitrary window fun
tion F (G) leads toZ F (G)A2(e;G) eieG dG � Æg(e) � f(e) : (3.13)Here f(e) = F [F (G)℄ denotes the Fourier transform of F (G) and \�" stands for the
onvolution integral. ThereforeÆgF :=X� F (G)A�(E) eiS�(E)�h �i�� �2 � Æg(e) � f(e) ; (3.14)where ÆgF denotes the tra
e formula with damped amplitudes. This relation shows thatfolding the semi
lassi
al level density with a smoothing fun
tion f(e) is equivalent to amultipli
ation of the amplitudes with a window fun
tion F (G). Unfortunately the restri
-tions of Eqs. (3.7) and (3.9) are quite severe and often prevent the appli
ation of Eq. (3.14).With two additional approximations these restri
tions 
an be relaxed.In the generi
 situation Eq. (3.9) is violated and only the 
ommon dependen
e of theamplitudes on e 
an be separated out:A2(e;G) = AG(e;G) Ae(e) : (3.15)In this 
ase Eq. (3.14) is still a good approximation if the variation of AG(e;G) in eis suÆ
iently slow. Denoting the 
hara
teristi
 width of f(e) with 
, this means thatAG(e;G) has to be nearly 
onstant over a region 
 in e.If, on the other hand, there are no fun
tions e(E) and G(E;�) that ful�ll Eq. (3.7), a lo
alexpansion of the a
tion S in powers of e 
an be used:S�h = S(e0)�h + G(e0) (e � e0) + O(e� e0)2 : (3.16)



20 Chapter 3: Smoothing quantum os
illationsIf this approximation is valid in a region in e that is wider than the typi
al width 
 of thesmoothing fun
tion, Eq. (3.14) still holds. In the general 
ase G is therefore given by the�rst derivative of the 
lassi
al a
tion with respe
t to e:G(E) = 1�h dSde ����E : (3.17)With e = E, �hG is the period T of the orbit, so that �hG is referred to as the quasiperiod. Forsystems with 
onstant absolute velo
ity along the orbit (this holds espe
ially for billiards),the 
hoi
e e = k leads todSde = dSdE dEdk = T � k�h2m = �hL ;where L is the geometri
al orbit length.Putting all approximations together, it was shown that damping the amplitudes in thetra
e formula with a window fun
tion F (G) results in an approximation for the leveldensity folded with the Fourier transform of F (G):ÆgF � f(e) � Æg : (3.18)This is the main result of this se
tion. Eq. (3.18) holds if the 
onditionsS � S(e0) +G(e0) (e � e0) (3.19)and A2(e;G) � 
onst (3.20)are ful�lled in a region wider than the typi
al width 
 of the smoothing fun
tion. These
onditions depend mainly on the behavior of the a
tions and amplitudes of the orbits. Inorder to mat
h them, a well-adapted 
hoi
e of the generalized energy is essential. Note thatfor narrow smoothing fun
tions (small 
), the 
onditions are less restri
tive. Therefore,using Eq. (3.18) is often justi�ed for a full quantization, whereas for the 
al
ulation of thegross-shell stru
ture the 
onditions Eqs. (3.19) and (3.20) put tight limits on the use ofthe amplitude damping ansatz { whi
h might seem 
ounter-intuitive at �rst sight. Sin
eevery orbit is uniquely determined by its value of G, and G should be suÆ
iently smoothin pra
ti
al appli
ations, the amplitude damping s
heme may not depend expli
itly onthe repetition number of the orbit. For most of the the appli
ations of Eq. (3.18) in thepresent work this limitation will be irrelevant. Note, however, that for the damping s
heme
ommonly used for the free 2DEG (
ompare to 
hapter 6), Eq. (3.18) does not apply.A simple example might be helpful to illustrate the result. Pure billiard systems are thosewhere the the a
tion along the orbits s
ales with the wave number: S = �hk �L, and L, thegeometri
 orbit length, is independent of the energy. Settinge(E) = k =r2mE�h2 and G(�) = L ; (3.21)Eq. (3.19) is ful�lled trivially. If Eq. (3.20) is also mat
hed, then the use of a windowfun
tion F depending on the orbit length L is equivalent to a folding of the level density



3.3 Smoothing beyond the leading order in �h 21in k. Evaluating the tra
e formula with a Gaussian depending on the orbit length L aswindow fun
tion yields the level density folded with a Gaussian in k. This is the te
hnique
ommonly pra
ti
ed for the 
omputation of tra
e formulas for billiard systems. Eq. (3.18)is somewhat more general, sin
e it is not restri
ted to billiard systems nor to spe
ialwindow fun
tions.The use of Eq. (3.18) is very 
onvenient. Its range of validity 
an easily be 
he
ked usingEqs. (3.19) and (3.20). Furthermore, there is no general limitation of its appli
ability tothe leading order in �h. In the following se
tion Eq. (3.18) will be modi�ed so that it 
andeal with two �h 
orre
tions whi
h o

ur in the disk billiard.3.3 Smoothing beyond the leading order in �hThe mi
ros
opi
 ansatz for the in
lusion of s
attering and �nite temperature in the tra
eformula is, as already pointed out, limited to the 
ontributions of leading order in �h.It is therefore questionable to use this smoothing s
heme for higher-order �h terms likebifur
ations or grazing, sin
e thereby the in
uen
e of the 
orre
tions on the smoothingis negle
ted. The examination of the impa
t of higher-order �h 
orre
tions thus demandsa generalized smoothing s
heme whi
h is appli
able to the relevant �h 
orre
tions. Butjust as the in
lusion of �h 
orre
tions ne
essitates an adaption to the smoothing s
heme,so does the ex
lusion thereof. This 
omes about as omitting �h 
orre
tions does not onlylead to missing terms in the tra
e sum, but also renders the in
lusion of the smoothingina

urate. A way to distinguish these two e�e
ts is desired.A 
omplete in
lusion of se
ond leading order �h e�e
ts in the mi
ros
opi
 
al
ulation ofSe
t. 3.1 requires the derivation of the tra
e formula itself to se
ond order. This taskis, as already pointed out, both numeri
ally and analyti
ally so involved that it rendersthe semi
lassi
al approa
h useless for pra
ti
al appli
ations. This work therefore followsa di�erent approa
h, namely to repla
e the mi
ros
opi
 approa
h by the formulas statingthe equivalen
e between smoothing and amplitude damping. The latter formulae shall befound mu
h easier to generalize.Along this path, the following se
tion derives expli
it amplitude damping formulas appli-
able to two kinds of higher-order �h 
orre
tions, namely bifur
ations and grazing. Theansatz is, however, not restri
ted to these spe
i�
 
ases but 
an be used to derive analogousformulae for a large 
lass of 
orre
tions.After that, Se
. 3.3.2 will introdu
e the folding approa
h, a simple numeri
al s
heme
utting down the in
uen
e of higher-order �h 
ontributions on the smoothing pro
edure.This method does not rely on the knowledge of the 
orre
tion terms, so that it makes theseparation of the two 
ontributions of �h 
orre
tions to the tra
e formula dis
ussed abovepossible.3.3.1 In
luding os
illating amplitudesThe general pro
edure to implement smoothing in tra
e formulae has been derived inSe
. 3.2. The main result is restated here in a notation 
onvenient for a generalization:



22 Chapter 3: Smoothing quantum os
illationsFor an energy variable e(E) and a tra
e formulaÆg = Im"X� A�(e) eix�(e)# = X� A�(e) sin[x�(e)℄ ; (3.22)the smoothing, i. e. the 
onvolution with the line shape fun
tion f(e), 
an be approximatedby damping the semi
lassi
al amplitudes with a window fun
tion F (T�):ÆgF = X� A�(e)F (T�) sin[x�(e)℄ � f(e) � Æg : (3.23)This approximation is only valid for slowly varying real amplitudes. The implementationof two kinds of �h 
orre
tions to the tra
e formula for the disk billiard, namely tangent bi-fur
ations and grazing, will lead to os
illating amplitudes. This motivates a generalizationof Eq. (3.23) to os
illating real and 
omplex amplitudes.3.3.1.1 Os
illating real amplitudesAny real amplitude A�(e) 
an be written asA�(e) = M�(e) � 
os[��(e)℄ ; (3.24)where �(e) is monotonous in e and M(e) is real and does not 
hange sign. Inserting thisin Eq. (3.22) and usingsin(x) 
os(�) = 12 [sin(x� �) + sin(x +�)℄ ; (3.25)the two terms 
an individually be treated a

ording to Eq. (3.23). This leads to thefollowing smoothing s
heme generally appli
able to os
illating real amplitudes:ÆgF = X� M� � �F 
os(��) sin(x�) + �F sin(��) 
os(x�)�= X� A� �F sin(x�) +X� �F M� sin(��) 
os(x�) ; (3.26)where �F = F+ + F�2 ; �F = F+ � F�2 ;F+ = F (x0 + �0) ; F� = F (x0 � �0) : (3.27)The dashes denote the derivatives with respe
t to e. For slowly os
illating amplitudes(�0 � x0) the se
ond term in Eq. (3.26) is negligible, whereas the �rst term reprodu
esthe previous result for non-os
illating amplitudes Eq. (3.14). The se
ond term gives a
orre
tion depending mainly on �0, i. e. the frequen
y of the amplitude os
illation. Asexpe
ted, this 
orre
tion is large for rapidly os
illating amplitudes.



3.3 Smoothing beyond the leading order in �h 233.3.1.2 Spe
ial 
ase: Tangent bifur
ationsThe uniform approximation of the tangent bifur
ation a

ording to Eqs. (B.8) and (B.7)leads to the Airy fun
tion as semi
lassi
al amplitude. For this spe
ial 
aseÆg =X� Ai(y�) sin(x�) (3.28)one gets, using Eq. (3.26),ÆgF =X� � �F Ai(y�) sin(x�) + �FBi(y�) 
os(x�)� : (3.29)The frequen
y �0 
an be expressed as�0(e) = Ai(e)Bi0(e) � Ai0(e)Bi(e)Ai(e)2 +Bi(e)2 � y0 : (3.30)These formulas are used in Se
. 4.3.3 on the treatment of the tangent bifur
ations in thedisk billiard. There, the 
orre
tions to the smoothing s
heme (i. e. mainly the se
ondterm of Eq. (3.29)) will be seen to be 
omparable to the 
orre
tions stemming from theuniform treatment of the bifur
ations. This shows that the 
orre
t implementation of thesmoothing is vital for an examination of higher-order �h 
ontributions to the tra
e formula.3.3.1.3 Os
illating 
omplex amplitudesFor os
illating 
omplex amplitudes, Eq. (3.26) 
an be applied to the real and the imaginarypart of A� separately, so that no spe
ial treatment has to be introdu
ed. For the spe
ial
ase that the amplitude 
an be written asA�(e) =M�(e) � expfi��(e)g ; (3.31)the implementation of smoothing is simply given byÆgF =X� M� F+ sin(x� +��) : (3.32)Note that now both the os
illating term and the damping via the window fun
tion F onlydepend on x� +��. This is similar to the original formula for slowly varying amplitudesEq. (3.23).3.3.1.4 Spe
ial 
ase: GrazingEq. (3.32) 
an be used for the Fresnel integrals o

urring in grazing 
orre
tions (see, e. g.,Se
. 4.3.4). Setting~I(y) = �C(y)� 12�+ i�S(y) � 12� ; (3.33)



24 Chapter 3: Smoothing quantum os
illations~I 
an be written a

ording to Eq. (3.31). Using Eq. (3.32), some straight-forward 
al
u-lations show that the smoothing of a tra
e formulaÆg = Im"X� [C(y�) + i�S(y�)℄ eix�# (3.34)
an be implemented byÆgF =X� �F+ [C(y) sin(x) + �S(y) 
os(x)℄ + F (x0)� F+p2 sin�x + ��4�� ; (3.35)where � = �1 and � = �=2 � y2. Note that now, in 
ontrast to Eq. (3.32), a 
orre
tionterm with an amplitude depending mainly on �0 shows up.3.3.2 The folding approa
hThe smoothing pro
edure presented above 
an only be applied if the �h 
orre
tions 
an be
al
ulated expli
itly. But, as already pointed out, also the negle
ted (and thus unknown)
orre
tions a�e
t the validity of the amplitude damping ansatz for the implementationof smoothing. This is espe
ially 
lear for bifur
ations: Negle
ting bifur
ations leads todiverging Gutzwiller amplitudes. In the vi
inity of the bifur
ation 
ondition Eq. (3.20)of Se
. 3.2 is thus violated. The 
onvolution of the tra
e sum with the line shape istherefore no longer equivalent to the 
ommon amplitude damping. Sin
e at bifur
ationsthe 
ontribution to the tra
e sum is lower in powers of �h, the mi
ros
opi
 approa
h alsofails, as the leading-order assumption is not ful�lled.The simplest te
hnique to separate the dire
t in
uen
e of higher-order �h-terms on the tra
eformula from the e�e
ts they have on the implementation of smoothing is to perform thesmoothing exa
tly by a numeri
al 
onvolution with the appropriate line shape. With theplausible assumption that higher-order �h 
ontributions do not in
uen
e the line shape,this 
an be taken a

ording to Se
. 3.2 as the Fourier transform of the amplitude dampingfun
tion. This numeri
al pro
edure to implement smoothing in the tra
e formula will bereferred to as folding approa
h.Both the example of the disk billiard in 
hapter 4 and the magneto
ondu
tan
e of the
hannel with antidots in 
hapter 7 will show that for systems where many orbits 
on-tribute, the dominating e�e
t of bifur
ations is not given by the additional terms theyintrodu
e in the tra
e formula, but stems from their in
uen
e on the implementation ofsmoothing. Negle
ting the �h-
orre
tions of the bifur
ations in tra
e formulae, but 
orre
tlyimplementing the smoothing, will prove to be a good approximation in these 
ases.3.4 Smoothing for other reasonsEven for systems where no experimental smoothing is relevant,2 the implementation of asmoothing s
heme as presented above might be useful.A �rst motivation is given by the mathemati
al properties of semi
lassi
al tra
e formulae.In the form used in this work, they exhibit non-trivial 
onvergen
e properties. From a2See for example the disk billiard in 
hapter 4, whi
h is only 
ompared to the pure quantum result.



3.4 Smoothing for other reasons 25mathemati
al point of view they 
annot be summed up straight-forwardly. This is already
lear from the fa
t that the quantum me
hani
al single parti
le level densities are sumsof Æ-fun
tions. These are not fun
tions in a mathemati
al sense, but distributions, whi
hneed spe
ial treatment. For various attempts establishing proper resummation s
hemes oftra
e formulae see Refs. [111, 101℄.If one 
onsiders, on the other hand, the smoothed level density, the mathemati
al problemsvanish to a great extent. Cal
ulating the tra
e formula without smoothing as the limit ofvanishing smoothing width allows to ignore the 
onvergen
e properties of the tra
e sumswithin the 
ontext of this work.Another appli
ation of smoothing is to 
ope with the te
hni
al limits of a numeri
al evalu-ation of the tra
e formula. Eq. (2.14) 
onsists of a sum over all 
lassi
al periodi
 orbits ofa system, usually in�nitely many. In a numeri
al approa
h, this sum has to be trun
ated.The impa
t of this trun
ation 
an be 
ontrolled a

ording to Se
. 3.2 by identifying the
ut-o� with the window fun
tion F (G). Eq. (3.18) thus allows a pre
ise estimate of theerror introdu
ed by the trun
ation in a numeri
al evaluation.It is however often more e�e
tive to use the relation between smoothing and amplitudedamping in the other dire
tion: Given the tolerated numeri
al e�ort, the question is how to
hoose the orbits whi
h are in
luded in the numeri
al evaluation. This problem is equiva-lent to the standard problem of Fourier spe
tros
opy, namely how to get the best spe
trumfrom a �nite range of measured intensities. There, spe
ial window fun
tions in analogy toSe
. 3.2 are used. There is a large variety of reasonable window-fun
tions at hand. For adetailed dis
ussion see Ref. [43℄. There is no optimal window fun
tion for all appli
ations,as there is a fundamental trade-o� between the width of the peaks and the intensity ofspurious sidebands. For the evaluation of the tra
e formula it is usually 
onvenient to usewindow fun
tions whi
h already in
lude the (unavoidable) trun
ation. Choosing a F (G)whi
h is nonzero only in a �nite range automati
ally 
ontrols the trun
ation error. In thiswork, a triangular window fun
tion is used.The last reason for the implementation of a smoothing s
heme like Eq. (3.18) is 
loselyrelated to the problem of the numeri
al evaluation of tra
e formulae mentioned above.For any given window fun
tion (whi
h may be only due to the trun
ation s
heme imple-mented), the expe
ted line width and line shape 
an be 
al
ulated. This method providesthe basis for a very pre
ise numeri
al 
al
ulation of the semi
lassi
al single-parti
le en-ergies. For details see Se
. 4.6 of Ref. [1℄. In Ref. [2℄ this ansatz was used to prove theidentity of the EBK and the Gutzwiller result for the disk billiard numeri
ally.




