
Chapter 2Semilassial approximationsSemilassis are usually de�ned as approximations of the quantum mehanial equa-tions to leading order in �h. This de�nition is aurate, short, and self-ontained |but by no means self-explaining. This hapter �rst provides the neessary ontext bygiving a short overview of the history of semilassial approximations before presentingthe modern form used in the subsequent hapters.
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6 Chapter 2: Semilassial approximationsThe lassi�ation of semilassial approximations in theories for integrable, purely haotiand mixed systems follows roughly the historial development of the disipline. This hap-ter introdues the entral ideas of semilassial approximations for the di�erent situationsfollowing more or less this hronologial order. It does not attempt, however, to reviewthe whole variety of di�erent approahes developed so far, but will onentrate on keyideas and methods relevant for the present work.2.1 Integrable systemsThe �rst attempts that { from a modern point of view { would be alled semilassialdate bak prior to the development of wave mehanis. The empirial Bohr-Sommerfeldquantization ruleS = I p dq = 2��h � n (n 2 IN) (2.1)suessfully explained the spetrum of hydrogen and ionized helium. Despite huge e�orts,however, it ompletely failed for neutral helium. When in 1926 the wave mehanialapproah suessfully explained this long-onsidered problem, it superseded the Bohr-Sommerfeld sheme, and the role losed orbits play for quantization was ignored for nearlyhalf a entury.Soon after, an expansion of the new wave mehanial quantum theory in powers of �hwas given by Wentzel, Kramers and Brillouin [85, 51, 20℄. It is usually alled WKB-approximation. The two key ideas are1. Separate the wave funtion in a real amplitude and a (unit) phase fator aordingto 	(r; t) = A(r; t)eiR(r;t)=�h : (2.2)The quantum momentum of the partileh 	 j � i�hrj 	 i = rRA2 � i�hArA (2.3)is well de�ned and �nite in the semilassial limit �h ! 0. Inserting this ansatz inthe Shr�odinger equation yields two equations for A and R, equivalent to the timeevolution of the real and the omplex part of the wave funtion. For a HamiltonianH = p2=2m + V (r) this results in�R�t + (rR)22m + V (r)� �h22mrAA = 0 ; (2.4)and �A�t + rRrAm + ArR2m = 0 : (2.5)These equations are the starting point of Madelung's hydrodynami piture of quan-tum mehanis [56℄. The naming was motivated by the fat that with � := A2 andv := rR=m Eq. (2.5) takes the form of a ontinuity equation _�+r(�v) = 0.



2.2 Chaoti systems 72. The semilassial approximation orresponds to the limit �h! 0, whih is well de�nedfor Eqs. (2.4) and (2.5). In this limit the last term in Eq. 2.4, the so-alled quantumpotential, vanishes1. This equation then takes the form of a lassial Hamilton-Jaobiequation _R + H(r;rR) = 0. Using this analogy it an be shown that R is in fatgiven by Hamilton's prinipal funtion along a lassial path.For one-dimensional (or separable) systems the Hamilton-Jaobi equation an be solved ingeneral. The ondition of the simple-valuedness of the wave funtion leads to quantizationonditions. These an be written down expliitly,2 taking exatly the form of the Bohr-Sommerfeld rule Eq. (2.1).The lassial turning points, however, introdue additional subtleties.3 This was �rstrealized by Kramers [51℄, who derived additional phase fators ��=2 using his onnetionformulas. These fators orrespond to phase shifts at reetions. In Se. 4.3.2 this pointwill be onsidered in some more detail. The quantization ondition is modi�ed by theadditional phases aording toS = I p dq = 2��h�n+ �4� (n 2 IN) : (2.6)The additional phases from the lassial turning points shift the energy spetrum. Assuh, they are responsible for the quantum mehanial zero point energy.The WKB approah an be generalized to integrable systems, i. e. systems with as manyonstants of motion as degrees of freedom. In these systems the phase-spae motion ison�ned to a torus.4 The losed paths along whih the quantization in analogy to Eq. (2.6)has to be performed are the topologial invariant losed paths on this torus. In this form,it is usually named EBK after Einstein, Brillouin and Keller [45℄. Whereas for (e�etively)one-dimensional systems the lassial turning points lead to additional phases, in higherdimensions their role is taken by fousing points of trajetories in on�guration spae,the so-alled austis. These orrespond to foldings in phase spae, where the orientationof the on�guration-spae surfae hanges. The additional phases, whih are nowadaysalled Maslov indies5, only depend on the topology of the lassial path.The Maslov indies are one ingredient neessary for a suessful semilassial quantizationof the neutral helium whih was missed by Heisenberg and oworkers in their attemptsprior to 1926. The seond problem they did not take into aount is that Helium, athree-body problem, is not integrable, but haoti. The role of lassial orbits for thequantization of haoti problems remained unlear for another deade.2.2 Chaoti systemsThe methods presented above result in an energy quantization rule whih depends onindividual, harateristi orbits of the system. The general hope was that the lose on-1The alternative interpretation of quantum mehanis presented by Bohm [109℄ preserves the quantumpotential. It solves the Hamilton-Jaobi equation inluding this amplitude-dependent term. A reent workshows that this ansatz might be helpful in the interpretation of the quantum measurement proess [102℄.2For expliit examples, see, e. g., setion 2.4 of Ref. [100℄.3The formal reason is that at lassial turning points the quantum potential is not negligible.4This holds for bounded systems, to be preise.5The de�nition of the Maslov index is not onsistent in the literature. In this work, the term is laxlyused for all additional phases in multiples of �=2.



8 Chapter 2: Semilassial approximationsnetion between single orbits of the system and individual quantum states established forintegrable systems would also hold in the non-integrable ase. This belief turned out to bewrong, and obsured for a long time the way to a semilassial treatment of haoti sys-tems. In a series of papers [36, 37, 38, 39, 40℄ starting in 1967, Gutzwiller established thelong-searhed bridge between lassial haoti dynamis and quantum properties of thesystem. This work onstitutes the foundation of modern semilassial theories. The en-tral result, the famous trae formula for the level density of a ompletely haoti system,has by now been re-derived using various alternative approahes. Whereas the originalwork of Gutzwiller started out with the Feynman path integral, Bogomolny uses a desrip-tion of the Shr�odinger equation in terms of a semilassial transfer operator ating onthe Poinar�e map [16℄, and Smilansky employs a sattering approah [106℄. Citanovi� andoworkers [101℄ alulate the quantum mehanial propagator K using the fat that K it-self solves the Shr�odinger equation. The orresponding wave funtion is approximated bya very nie generalization of the multidimensional WKB sheme to non-integrable systems.Readers interested in details on these derivations are referred to the original literature orto the reent reviews Refs. [100, 105℄. Here, only the main ideas leading to the Gutzwillertrae formula will be skethed.2.2.1 The semilassial PropagatorThe quantum mehanial propagator K is the operator that propagates a wave funtion	 through time :	(r; t) = K(r; r0; t)	(r0; 0) : (2.7)A semilassial approximation an be derived starting out with the Feynman path integralexpression of the propagatorK(r; r0; t) = Z Dr exp� i�hR(r; r0; t)� ; (2.8)where R is Hamilton's prinipal funtion. R Dr denotes an in�nite-dimensional integra-tion. It extends over all paths from r0 to r in time t. The integrand is rapidly osillating,so that most of the ontributions to K anel. This type of integrals an be well ap-proximated using the stationary phase approximation, one of the entral tehniques insemilassis. In one dimension, it is given byZ 21 e i�hR() d = Z 21 e i�h (R0+R2(�0)2+R3(�0)3+ ::: ) d� Z 1�1 e i�h (R0+R2(�0)2) d = e i�hR0r �jR2j ei sign(R2)�=4 : (2.9)If more stationary points exists, their ontributions have to be summed up. The gener-alization to more dimensions is straight forward. The stationary points of the exponentof Eq. (2.8) orrespond to the lassial paths. Therefore the stationary phase approxima-tion of K onsists of the replaement of the integral over all paths from r0 to r by theappropriately weighted lassial ones.



2.2 Chaoti systems 9The resulting approximation of the propagator was { apart from the indies �, whih againstem from austi points6 { already proposed by Van Vlek [86℄ bak in 1928:Ks(r; r0; t) = � 12�i�h�D=2 X�(r;r0;t)sdet ���� �2R�r�r0 ���� exp� i�hR(r; r0; t)� i� �2� : (2.10)Here �(r; r0; t) denotes the sum over all lassial paths onneting r and r0 in time t, andD is the system dimension. Eq. (2.10) is one of the key formulas to modern semilassialtheories.2.2.2 The semilassial Green's funtionMore onvenient than the propagator is the Green's funtion, its (half-sided) Fourier trans-form with respet to timeG(r; r0;E) = � i�h lim"!0Z 10 K(r; r0; t) exp� i�h (E � i")t� dt : (2.11)Gutzwiller treated the ase where all lassial orbits are isolated in phase spae, i. e. haveno neighbor with the same energy and ation at in�nitesimal distane. If additionally theations S of the lassial trajetories are muh larger than �h, the integrations perpendiularto the lassial paths an be performed in stationary phase approximation. This leads tothe semilassial approximation of the Green's funtion aording toGs(r; r0;E) = 2�(2�i�h)D+12 X�(r;r0;E)sdet ����Sr0r Sr0ESEr SEE ���� exp� i�hS(r; r0;E) � i��2� ; (2.12)where Skl denotes the partial derivatives �2S=(�k �l). The summation extends over alllassial paths � with �xed energy E onneting r0 and r.The general strategy for semilassial approximations is to �nd an exat expression of thedesired quantity in terms of Green's funtions. Replaing the Green's funtions by theirsemilassial approximations yields a semilassial formula for the desired observable. Thisproedure will be used in the following setion to derive a semilassial formula for thelevel density. In hapter 5 the same approah will lead to a semilassial expression forthe ondutivity.2.2.3 The semilassial level densityThe level density an be expressed in terms of Green's funtion asg(E) = � 1� lim"!0 Im [Tr(G(r; r; E + i"))℄ : (2.13)The lassial paths from r to r, i. e. the losed paths, fall into two groups: The orbitswith zero length, and �nite length orbits returning to r. The ontribution of the zerolength orbits has to be evaluated separately, sine they violate the ondition S � �h,6These Morse indies slightly di�er from the Maslov indies �.



10 Chapter 2: Semilassial approximationswhih is required for the validity of the stationary phase approximation. These orbitslead to the average density of states ~g(E), whih alternatively an be alulated usingthe familiar Thomas-Fermi relation. From now on, only the ontributions of �nite-lengthorbits will be onsidered. These are responsible for the osillatory deviations Æg(E) fromthe smooth part ~g(E). Performing another stationary phase approximation to evaluatethe trae integral yields the famous Gutzwiller trae formulaÆg(E) � 1��hXpo TPPOqjdet(fM � I1)j| {z }:= Apo os�S�h � ��2� : (2.14)The summation extends over all lassial periodi orbits po of the system. TPPO is theperiod of the primitive orbit, i. e. the part of the orbit until it �rst loses in phase spae.The stability matrix fM is given by the non-trivial part of the Monodromy matrix M . It isrelated to the stability of an orbit. This quantity is explained in detail in appendix A.1.2.The fators in front of the os-term are usually olletively alled semilassial amplitudeApo of an orbit. Formula Eq. (2.14) is often given in an analog form whih separates thesum over the di�erent orbits from the sum over their repetitions. In this thesis the sumover the repetitions should always be inluded in the sum over all orbits.Please note that the trae formula for the semilassial quantization of haoti systemshas a ompletely di�erent struture than the quantization onditions for the integrablease. Whereas for the latter individual paths in the system are related to single quantumstates, in haoti systems eah periodi orbit ontributes to all energy levels.The Gutzwiller trae formula provided the basis for a suessful semilassial treatmentof neutral helium, whih was �nally aomplished in 1991 [28℄. 65 years after the sameproblem had set an end to the empirial quantization rules, this was a great suess for thegrowing semilassial ommunity. In the following years searhing for traes of lassialorbits in quantum spetra as well as superposing lassial trajetories to approximate shellstrutures or even individual quantum levels have been reognized as powerful theoretialtools.For the purpose of this work, two generalizations of the trae formula are needed, namelythe extension to ontinuous symmetries and to systems with mixed phase spae. Thesewill be presented in the following setions.2.3 Continuous symmetriesFor systems with ontinuous symmetries the Fourier integral Eq. (2.11) an not be eval-uated as skethed above. A suitable adaption of the proedure has been proposed byStrutinsky and Magner [76℄ and, in a more general form, by Creagh and Littlejohn [23℄.The main idea of the latter generalization is a separation into a symmetry-free systemwhih is treated in analogy to the Gutzwiller ase, and the symmetry degrees of freedom,over whih the integrations are performed exatly. The struture of the trae formulaEq. (2.14) remains essentially unhanged by this proedure, but the de�nition of the am-plitudes is di�erent, reeting the di�erent struture of the underlying lassial dynamis:Æg(E) � � 1�Im " 1i�h 1(2�i�h)k=2 Xpo Zpo dt d�(g) jKpoj�1=2eiSpo�h �i�po �2 # =



2.4 Mixed phase spae 11=: �� 1��h� k+22 Im "Xpo ApoeiSpo�h �i�po �2 # : (2.15)The dimensionality of the symmetry is denoted by k. The integral over t replaes theperiod of the primitive orbit TPPO in the Gutzwiller ase. Rpo d�(g) is the integration overthe symmetry, where �(g) denotes the measure of the symmetry group. The stabilityterm of the Gutzwiller formula is replaed by jKj1=2, whereK = Q det(W ) det(fM � I) : (2.16)Here fM is the stability matrix of the symmetry-redued system. Q depends only on thetype of symmetry. For Abelian symmetries Q = 1, and for three-dimensional rotationalsymmetry Q = J�2, where J denotes the total angular momentum. Trajetories whihare periodi in the symmetry-redued system do not neessarily lose in omplete phasespae. This leads to the additional fator det(W ), whereWij = ��i�Jj : (2.17)The �i are the operators of the symmetry and the Ji are the orresponding onservedquantities. The topologial index � is given by � = � � Æ, where Æ is the number ofnegative eigenvalues of W . The Maslov index � is the same as in the original Gutzwillerformula.This approah an deal with ontinuous symmetries of arbitrary dimensionality. Eahsymmetry dimension orresponds to one onstant of motion Ji. Eq. (2.15) applies evento integrable systems, where the number of Ji equals the degrees of freedom. The traeformula of Creagh and Littlejohn therefore provides a uni�ed desription of integrable andhaoti systems. Although it an also be applied to systems with mixed phase spae, itannot deal with the transition from regular motion to haos. This problem will be dealtwith in the following setion.The power in �h of the ontributions of the lassial periodi orbits depends on the di-mension of the symmetry. This implies that the amplitude of the osillating part of thelevel density is larger for highly symmetri systems. In systems where di�erent orbitshave di�erent dimensions of symmetry, their power in �h is di�erent. The leading-orderontribution in �h stems from the orbits with the highest ontinuous symmetry, whereasthe other orbits give rise to �h orretions. In hapter 4 this point will be disussed in moredetail for the example of the disk billiard.2.4 Mixed phase spaeThe semilassial methods desribed above apply either to the integrable or to the om-pletely haoti situation. Many realisti physial systems, however, show a mixed phase-spae struture. This introdues additional ompliations for semilassi approximations,whih are not ompletely settled by now. Only the ansatz of Bogomolny [16℄ does notexpliitly assume regular or haoti motion, so that it an deal with mixed phase spaeas well { but unfortunately only on a numerial level. The standard Gutzwiller approahannot ope with the transition from regular to haoti behavior. The extensions whih



12 Chapter 2: Semilassial approximationshave been worked out to overome this limitation will be introdued in this setion. Theybuild the basis for the onsiderations in the following hapters.As pointed out above, the phase-spae motion of an integrable system is on�ned to a torus.The periodi orbits of those systems are given by the repetitions of the elementary loopsof the Bohr-Sommerfeld quantization. There are only a few suh orbits up to a givenmaximum period Tm. Their number inreases as a power law with Tm. In ompletelyhaoti7 systems, however, the number of periodi orbits inreases exponentially with theperiod aording to N / 1=(hTm) exp(hTm), where h is the topologial entropy.This implies that a system on its way from regular to haoti motion reates new lassialperiodi orbits. These reation points are alled orbit bifurations. The underlying meh-anism is visualized in Fig. 2.1. There, the situation prior to the integration of Eq. (2.13)is illustrated. The solid line gives the ation in dependene of r, and the arrows indiatethe stationary points, i. e. the lassial periodi paths. Varying an external parameter of
r→

(d)

r→

(c)↑

S

r→

(a)

r→

(b)Figure 2.1: The lassial ation S(r; r;E) of a one-dimensional system in depen-dene of an external parameter. The parabolas give the loal quadrati approximationsat the stationary points.the system hanges the funtional dependene of S on r. The two extrema, i. e., the twoperiodi orbits in (a) approah (b), fall together () and �nally disappear (d). From rightto left, these pitures illustrate the birth of two periodi orbits. This is the simplest typeof bifuration, alled tangent bifuration.In Gutzwiller's derivation, the integration of Eq. (2.13) is performed in stationary phaseapproximation. Aording to Eq. (2.9), this means to replae the integral over r by theintegrals over the parabolas approximating S(r; r;E) at the stationary points. Theseseond-order approximations are given by the dotted lines in Fig. 2.1. Obviously thestationary phase approximation gets inaurate for orbits in lose viinity. At the pointwhere the orbits oinide the �t parabolas have zero urvature. Sine the amplitude ofthe orbits is in this approximation proportional the inverse urvature of these parabolas,the Gutzwiller approximation diverges at bifuration points.To overome this problem, a loal expansion to higher order in the ation has been pro-posed by de Almeida and Hannay [8℄ or Kus et al. [53℄. Suh a loal approximation,however, does not reprodue the Gutzwiller limit of well separated orbits. Retaining boththe orret asymptoti and loal behavior is possible using uniform approximations, whihinterpolate smoothly between the limiting ases. These have been developed most sys-tematially by Shomerus and Sieber [72, 70, 73℄. Bifurations an be lassi�ed aordingto their normal form, and the authors give expliit formulas for all generi bifurations interms of the amplitudes, ations and Maslov indies of the orbits engaged. Non-generiases, e. g. systems with disrete symmetries, are not diretly overed by these formulasand need speial are. The expressions for the two types of bifurations relevant for this7This holds for ergodi systems, to be preise.



2.4 Mixed phase spae 13thesis are given in appendix B. Eqs. (B.7) and (B.8) apply to the tangent bifuration, andEq. (B.15) to the period doubling bifuration.The Gutzwiller approximation only ontains information about the lassial phase-spaestruture. At �rst sight, the uniform approximations of Shomerus and Sieber are ex-pressed in dependene of the same terms. They inlude, however, also ontributions ofghost orbits, i. e., analyti ontinuations of orbits beyond the regime where they lassiallyexist. This exeeds the purely lassial phase spae properties. In systems where theperiodi orbits are known analytially, this additional information is readily available. Ifthe equations of motion are solved numerially, however, this information an hardly beaessed. This problem will be examined in more detail in hapter 7.As an be dedued from the analytial loal form of the bifuration, the ontributions ofthe orbits engaged in a bifuration are inreased by a fator �h�Æ [70℄. Æ is positive; its valuedepends on the type of the bifuration. The negative exponent shows that the bifurationsare of leading order in �h. Thus, these points dominate in the semilassial limit �h=S ! 0(with S being the ation of a typial periodi orbit in the system). This gives a moreformal explanation for the divergene of the standard Gutzwiller-like approximation atthese points. The problems related with bifurations will be examined in detail for thelevel density of the disk billiard in hapter 4 and for the magnetoondutane of a hannelwith antidots in hapter 7.Systems with mixed phase spae may exhibit even more ompliated strutures in thelassial dynamis than the bifurations disussed above. Just as bifurations our whenin dependene of an external parameter two (or more) orbits approah and �nally oin-ide, also two bifurations an approah and fall together. This is alled a bifuration ofodimension 2.8 Treating those requires normal forms of even higher order in the ation.The bifurations of odimension 2 have reently been lassi�ed by Shomerus [69, 71℄.He also presented formulas for their uniform approximation. For bifurations of higherodimension, however, a general treatment is still laking. The analyti omplexity ofthe orresponding uniform formulae would anyway make them useless for pratial appli-ations. For the ontext of this work, the onsideration of the 'ordinary' bifurations ofodimension 1 will be suÆient.With the extension to systems with ontinuous symmetries of Se. 2.3 and inluding thebifurations by uniform approximations, integrable and haoti systems as well as systemswith mixed phase spae an be desribed semilassially. This generalized trae formulaonstitutes the main tool for the present work.Prior to the appliation of this semilassial trae formula to the disk billiard, some teh-nial details have to be worked out. This will be done in hapter 3, where the onvergeneproperties of the orbit sum are examined in the neessary detail. Readers mainly interestedin physis are invited to page 27 immediately.8This is not the exat de�nition of a bifuration of odimension 2, sine some \bifurations of bifura-tions" an still be desribed in a one-dimensional parameter spae. This distintion, however, is irrelevantin the ontext of this work.




